Zulip Chat Archive
Stream: maths
Topic: Eliminating into Prop woes
Koundinya Vajjha (Apr 09 2019 at 16:35):
I have defined the following
import algebra.archimedean def pow_two_near (n : ℤ) : (n > 1) → ∃ k : ℕ, (2 ^ k ≤ n ∧ n < 2^(k+1)) := by intro h ; exact (exists_nat_pow_near h one_lt_two)
Is there any way to get ahold of the k
without doing this?
noncomputable def index_pow_two_near (n : ℤ) (h : n > 1) : ℕ := classical.some $ pow_two_near n h
If I try to destruct the exists
I get an error:
def index_pow_two_near' (n : ℤ) (h : n > 1) : ℕ := begin have h := pow_two_near n h, cases h, --induction tactic failed, recursor 'Exists.dcases_on' can only eliminate into Prop end
Johan Commelin (Apr 09 2019 at 16:41):
@Koundinya Vajjha Try choose k hk using h
.
Koundinya Vajjha (Apr 09 2019 at 16:42):
Thanks Johan
Last updated: Dec 20 2023 at 11:08 UTC