Zulip Chat Archive
Stream: maths
Topic: Ideal of MvPolynomial of high degree
Jireh Loreaux (Jan 31 2025 at 23:14):
The following is a Submodule R (MvPolynomial σ R)
, but I claim it is actually an Ideal (MvPolynomial σ R)
. What's the easiest proof? (In fact, I also claim that it is equal to Ideal.span {(X i) ^ n | (i : σ)}
)
import Mathlib
variable (σ R : Type*) [CommRing R]
/-- The `R`-submodule spanned by monomials where one of the variables has multiplicity at least `n`. -/
def MvPolynomial.exceedDegree (n : ℕ) : Submodule R (MvPolynomial σ R) :=
restrictSupport R {f : σ →₀ ℕ | ∃ i, n < f i}
My algebra-fu is weak apparently.
Andrew Yang (Jan 31 2025 at 23:29):
Does this help?
import Mathlib.RingTheory.MvPolynomial.Basic
import Mathlib.RingTheory.MvPolynomial.Ideal
open MvPolynomial
example (σ R : Type*) [CommRing R] (n : ℕ) :
restrictSupport R {f : σ →₀ ℕ | ∃ i, n < f i} =
(Ideal.span ((monomial · (1 : R)) '' {f : σ →₀ ℕ | ∃ i, n < f i})).restrictScalars R := by
ext a
rw [restrictSupport, Finsupp.mem_supported, ← MvPolynomial.support]
simp only [Submodule.restrictScalars_mem, mem_ideal_span_monomial_image, Set.subset_def]
congr! with f _
exact ⟨fun ⟨i, hi⟩ ↦ ⟨f, ⟨i, hi⟩, le_rfl⟩, fun ⟨g, ⟨i, hi⟩, h⟩ ↦ ⟨i, hi.trans_le (h i)⟩⟩
Andrew Yang (Jan 31 2025 at 23:30):
The key is probably docs#MvPolynomial.mem_ideal_span_monomial_image
Andrew Yang (Jan 31 2025 at 23:32):
Or maybe
example (σ R : Type*) [CommRing R] (n : ℕ) :
restrictSupport R {f : σ →₀ ℕ | ∃ i, n ≤ f i} =
(Ideal.span {(X i) ^ n | (i : σ)}).restrictScalars R := by
trans (Ideal.span ((monomial · (1 : R)) '' {Finsupp.single i n | (i : σ)})).restrictScalars R
· ext a
rw [restrictSupport, Finsupp.mem_supported, ← MvPolynomial.support]
simp only [Set.subset_def, Submodule.restrictScalars_mem, mem_ideal_span_monomial_image]
simp
· congr
ext
simp [X_pow_eq_monomial]
(Note that the LHS is now ≤
and not <
)
Jireh Loreaux (Feb 01 2025 at 00:08):
Thanks! I'll have a look.
Jireh Loreaux (Feb 01 2025 at 00:26):
Ah indeed, the <
was a typo.
Jireh Loreaux (Feb 03 2025 at 20:19):
@Jack Knittle you will be interested in the above.
Last updated: May 02 2025 at 03:31 UTC