Zulip Chat Archive
Stream: maths
Topic: Pi of directed sets
Christopher Hoskin (Aug 07 2024 at 21:40):
I'm trying to show that the Pi of directed sets is directed:
variable {ι : Type*} {α : ι → Type*} [∀ i, LE (α i)]
lemma prodMk {d : (i : ι) → Set (α i)} (hd : ∀ (i : ι), DirectedOn (· ≤ ·) (d i)) :
DirectedOn (· ≤ ·) (Set.pi Set.univ d) := by
intro a ha b hb
let h := fun i => hd i (a i) (ha i trivial) (b i) (hb i trivial)
obtain ⟨c, hc⟩ : ∃ (c : (i : ι) → α i), ∀ (i : ι), a i ≤ c i ∧ b i ≤ c i := sorry
I'm not sure how to go about obtaining c
fromh
though?
Christopher
Eric Wieser (Aug 07 2024 at 21:44):
Does choose f hf using h
work?
Eric Wieser (Aug 07 2024 at 21:47):
lemma prodMk {d : (i : ι) → Set (α i)} (hd : ∀ (i : ι), DirectedOn (· ≤ ·) (d i)) :
DirectedOn (· ≤ ·) (Set.pi Set.univ d) := by
intro a ha b hb
dsimp
let h := fun i => hd i (a i) (ha i trivial) (b i) (hb i trivial)
choose f hf using h
simpa [Pi.le_def, ← forall_and] using ⟨f, hf⟩
Christopher Hoskin (Aug 07 2024 at 22:04):
Eric Wieser said:
Does
choose f hf using h
work?
Yes, that works! Thank you.
Christopher
Last updated: May 02 2025 at 03:31 UTC