Zulip Chat Archive

Stream: maths

Topic: Pi of directed sets


Christopher Hoskin (Aug 07 2024 at 21:40):

I'm trying to show that the Pi of directed sets is directed:

variable {ι : Type*} {α : ι  Type*} [ i, LE (α i)]

lemma prodMk {d : (i : ι)  Set (α i)} (hd :  (i : ι), DirectedOn (·  ·) (d i)) :
    DirectedOn (·  ·) (Set.pi  Set.univ d) := by
  intro a ha b hb
  let h := fun i => hd i (a i) (ha i trivial) (b i) (hb i trivial)
  obtain c, hc :  (c : (i : ι)  α i),  (i : ι), a i  c i  b i  c i := sorry

I'm not sure how to go about obtaining c fromh though?

Christopher

Eric Wieser (Aug 07 2024 at 21:44):

Does choose f hf using h work?

Eric Wieser (Aug 07 2024 at 21:47):

lemma prodMk {d : (i : ι)  Set (α i)} (hd :  (i : ι), DirectedOn (·  ·) (d i)) :
    DirectedOn (·  ·) (Set.pi  Set.univ d) := by
  intro a ha b hb
  dsimp
  let h := fun i => hd i (a i) (ha i trivial) (b i) (hb i trivial)
  choose f hf using h
  simpa [Pi.le_def,  forall_and] using f, hf

Christopher Hoskin (Aug 07 2024 at 22:04):

Eric Wieser said:

Does choose f hf using h work?

Yes, that works! Thank you.

Christopher


Last updated: May 02 2025 at 03:31 UTC