Zulip Chat Archive

Stream: maths

Topic: Schwarz-Pick, Grönwall, Bierbach, Koebe


Geoffrey Irving (Dec 07 2025 at 22:02):

I've proved a few more basic complex analysis results over the last while, but I don't think I've mentioned them here explicitly yet:

The Schwarz-Pick theorem, which is an easy corollary of Mathlib's Schwarz lemmas using Möbius transforms:

/-- Finite difference version of Schwarz-Pick for the unit disk -/
lemma Complex.dist_le_mul_mobius_of_mapsTo_unit_ball {f :   } (fa : ContDiffOn  ω f (ball 0 1))
    (fi : MapsTo f (ball 0 1) (ball 0 1)) (z1 : z < 1) (w1 : w < 1) := ...

/-- Derivative version of Schwarz-Pick for the unit disk -/
lemma Complex.norm_deriv_le_div_of_mapsTo_unit_ball {f :   } (fa : ContDiffOn  ω f (ball 0 1))
    (fi : MapsTo f (ball 0 1) (ball 0 1)) (z1 : z < 1) :
    deriv f z  (1 - f z ^ 2) / (1 - z ^ 2) := ...

The Koebe quarter theorem, Bieberbach's coefficient inequality, and Grönwall's area theorem, which were more work:

/-- The Koebe quarter theorem, unit ball case -/
theorem koebe_quarter {f :   } (fa : AnalyticOnNhd  f (ball 0 1)) (inj : InjOn f (ball 0 1)) :
    ball (f 0) (deriv f 0 / 4)  f '' (ball 0 1) := ...

theorem bieberbach {f :   } (fa : AnalyticOnNhd  f (ball 0 1)) (inj : InjOn f (ball 0 1)) (f0 : f 0 = 0)
    (d0 : deriv f 0 = 1) : deriv (deriv f) 0  4 := ...

/-- The region strictly outside radius `r` -/
def norm_Ioi (r : ) : Set  := {w :  | r < w}

/-- The Grönwall area has a nice series-/
theorem gronwall_volume_sum {f :   } (fa : AnalyticOnNhd  f (ball 0 1)) (f0 : f 0 = 1)
    (inj : InjOn (fun z  z * f z⁻¹) (norm_Ioi 1)) :
    HasSum (fun n  π * n * iteratedDeriv (n + 1) f 0 / (n + 1).factorial ^ 2)
      (π - volume.real ((fun z  z * f z⁻¹) '' norm_Ioi 1)) := ...
  1. https://github.com/girving/ray/blob/main/Ray/Schwarz/SchwarzPick.lean
  2. https://github.com/girving/ray/blob/main/Ray/Koebe/Koebe.lean
  3. https://github.com/girving/ray/blob/main/Ray/Koebe/Bieberbach.lean
  4. https://github.com/girving/ray/blob/main/Ray/Koebe/Gronwall.lean

Last updated: Dec 20 2025 at 21:32 UTC