Zulip Chat Archive
Stream: maths
Topic: Stating continuity of coe_fn
Moritz Doll (Apr 11 2022 at 18:16):
I have problems stating the following property of coe_fn
:
import topology.algebra.module.weak_dual
import linear_algebra.dual
import analysis.normed.normed_field
variables {π E : Type*}
variables [normed_field π] [add_comm_group E] [module π E]
instance add_monoid_hom_class_alg_weak_dual :
add_monoid_hom_class (weak_bilin (module.dual_pairing π E)) E π :=
module.add_monoid_hom_class π E
variables (f : weak_bilin (module.dual_pairing π E))
#check (f : (E β π)) -- works fine
lemma is_uniform_continuous_weak_coe :
uniform_continuous (coe_fn : (weak_bilin (module.dual_pairing π E)) β (E β π)) :=
begin
sorry,
end
The last lemma fails with
failed to synthesize type class instance for
has_coe_to_fun (weak_bilin (module.dual_pairing π E))
(Ξ» (αΎ° : weak_bilin (module.dual_pairing π E)), E β π)
I know that it is usually better to not explicitly mention coe_fn
, but here I see no other way to state the lemma.
Last updated: Dec 20 2023 at 11:08 UTC