Zulip Chat Archive

Stream: maths

Topic: Stating continuity of coe_fn


Moritz Doll (Apr 11 2022 at 18:16):

I have problems stating the following property of coe_fn:

import topology.algebra.module.weak_dual
import linear_algebra.dual
import analysis.normed.normed_field

variables {π•œ E : Type*}

variables [normed_field π•œ] [add_comm_group E] [module π•œ E]

instance add_monoid_hom_class_alg_weak_dual :
  add_monoid_hom_class (weak_bilin (module.dual_pairing π•œ E)) E π•œ :=
module.add_monoid_hom_class π•œ E

variables (f : weak_bilin (module.dual_pairing π•œ E))

#check (f : (E β†’ π•œ)) -- works fine

lemma is_uniform_continuous_weak_coe :
  uniform_continuous (coe_fn : (weak_bilin (module.dual_pairing π•œ E)) β†’ (E β†’ π•œ)) :=
begin
  sorry,
end

The last lemma fails with

failed to synthesize type class instance for
has_coe_to_fun (weak_bilin (module.dual_pairing π•œ E))
    (Ξ» (αΎ° : weak_bilin (module.dual_pairing π•œ E)), E β†’ π•œ)

I know that it is usually better to not explicitly mention coe_fn, but here I see no other way to state the lemma.


Last updated: Dec 20 2023 at 11:08 UTC