Zulip Chat Archive

Stream: maths

Topic: generates/measurable


Iocta (Dec 25 2021 at 06:29):

image.png

Is this the right way to define generates?

import measure_theory.measure_space

open measure_theory measure_theory.measure_space classical set real

open_locale classical
noncomputable theory

variable Ω : Type
variable [measurable_space Ω]


open measurable_space


structure algebra' (α : Type*) :=
(in_algebra : set α  Prop)
(algebra_empty : in_algebra )
(algebra_compl :  (s : set α), in_algebra s  in_algebra s)
(algebra_union :  (s1 s2 : set α), in_algebra s1  in_algebra s2  in_algebra (s1  s2))

def generates  (𝓐 : set (set )) (𝓢 : algebra' ) : Prop :=
(A : set , A  𝓐  𝓢.in_algebra A)  (
    -- 𝓣 contains 𝓐
    ∀𝓣 : algebra' , A : set , A  𝓐  𝓣.in_algebra A 
    -- then 𝓣 ⊆ 𝓢.
    A : set , (𝓢.in_algebra A  𝓣.in_algebra A)
  )

Iocta (Dec 25 2021 at 06:42):

I want to use it in this exercise
image.png

Yury G. Kudryashov (Dec 25 2021 at 15:50):

I guess, X ⁣:ΩαX\colon\Omega\to\alpha, A\mathcal A is a set of sets of α\alpha, S\mathcal S is the σ\sigma-algebra generated by A\mathcal A. What is F\mathcal F? Is it "the" σ\sigma-algebra on Ω\Omega, so Theorem 1.3.1 is actually docs#measurable_generate_from?

Yury G. Kudryashov (Dec 25 2021 at 15:51):

And you want to prove docs#comap_generate_from?


Last updated: Dec 20 2023 at 11:08 UTC