Loading [a11y]/accessibility-menu.js

Zulip Chat Archive

Stream: maths

Topic: is_dedekind_domain_dvr_equiv_is_dedekind_domain_inv


François Sunatori (Jun 17 2021 at 12:24):

Hi, I'm trying to show

lemma is_dedekind_domain_dvr_equiv_is_dedekind_domain_inv :
  is_dedekind_domain_dvr_iff A  is_dedekind_domain_inv_iff A :=
begin
  sorry
end

and noticed that is_dedekind_domain_dvr_iff isn't implemented yet.
Getting inspiration from is_dedekind_domain_iff and is_dedekind_domain_inv_iff
I defined it like so

lemma is_dedekind_domain_dvr_iff :
  is_dedekind_domain_dvr A 
    (¬ is_field A)  (is_noetherian_ring A) 
    (( P  ( : ideal A), P.is_prime  discrete_valuation_ring (localization.at_prime P))) :=
begin
  sorry
end

however I'm getting the error

failed to synthesize type class instance for
A : Type u_2,
_inst_2 : integral_domain A,
P : ideal A,
H : P  ,
 : P.is_prime
 P.is_prime

when I change discrete_valuation_ring (localization.at_prime P))) to discrete_valuation_ring A it type checks so it seems to me like it's unhappy with localization.at_prime P but I'm not sure why.

François Sunatori (Jun 17 2021 at 12:24):

here is an mwe

import ring_theory.discrete_valuation_ring
import ring_theory.fractional_ideal
import ring_theory.ideal.over

variables (R A K : Type*) [comm_ring R] [integral_domain A] [field K]

structure is_dedekind_domain_dvr : Prop :=
(not_is_field : ¬ is_field A)
(is_noetherian_ring : is_noetherian_ring A)
(is_dvr_at_nonzero_prime :  P  ( : ideal A), P.is_prime 
  discrete_valuation_ring (localization.at_prime P))

lemma is_dedekind_domain_dvr_iff :
  is_dedekind_domain_dvr A 
    (¬ is_field A)  (is_noetherian_ring A) 
    (( P  ( : ideal A), P.is_prime  discrete_valuation_ring (localization.at_prime P))) :=
begin
  sorry
end

Ruben Van de Velde (Jun 17 2021 at 12:28):

    (( P  ( : ideal A), P.is_prime  by exactI discrete_valuation_ring (localization.at_prime P))) :=

seems to work - this is an issue related to the instance cache

François Sunatori (Jun 17 2021 at 13:12):

great! thank you @Ruben Van de Velde

François Sunatori (Jun 17 2021 at 13:12):

if you don't mind, could you elaborate about
"this is an issue related to the instance cache"?

Anne Baanen (Jun 17 2021 at 13:17):

localization.at_prime needs to know that P is a prime ideal. The proof is found automatically by the typeclass system, based on a set of instances that the typeclass system searches through. However, this set is only updated "before the :" of a statement, so the P.is_prime is not added to it and so it cannot be found. exactI is a special tactic that updates the cache, which fixes this kind of issue.

Alex J. Best (Jun 17 2021 at 13:17):

An alternative is to name the hypothesis and apply it manually, this is slightly more brittle though I guess:

import ring_theory.discrete_valuation_ring
import ring_theory.fractional_ideal
import ring_theory.ideal.over

variables (R A K : Type*) [comm_ring R] [integral_domain A] [field K]

structure is_dedekind_domain_dvr : Prop :=
(not_is_field : ¬ is_field A)
(is_noetherian_ring : is_noetherian_ring A)
(is_dvr_at_nonzero_prime :  P  ( : ideal A), P.is_prime 
  discrete_valuation_ring (localization.at_prime P))

lemma is_dedekind_domain_dvr_iff :
  is_dedekind_domain_dvr A 
    (¬ is_field A)  (is_noetherian_ring A) 
    (( (P  ( : ideal A)) [h : P.is_prime], discrete_valuation_ring (@localization.at_prime _ _ P h))) :=
begin
  sorry
end

François Sunatori (Jun 17 2021 at 13:33):

thanks for the clear explanation @Anne Baanen , and the alternative @Alex J. Best !

François Sunatori (Jun 28 2021 at 01:33):

Hi, this is what I have now,

import ring_theory.discrete_valuation_ring
import ring_theory.fractional_ideal
import ring_theory.ideal.over

variables (R A K : Type*) [comm_ring R] [integral_domain A] [field K]

structure is_dedekind_domain_dvr : Prop :=
(not_is_field : ¬ is_field A)
(is_noetherian_ring : is_noetherian_ring A)
(is_dvr_at_nonzero_prime :  P  ( : ideal A), P.is_prime 
  discrete_valuation_ring (localization.at_prime P))

lemma is_dedekind_domain_dvr_iff :
  is_dedekind_domain_dvr A 
    (¬ is_field A)  is_noetherian_ring A 
    ( P  ( : ideal A), P.is_prime  by exactI discrete_valuation_ring (localization.at_prime P)) :=
  λ hf, hr, hd⟩, hf, hr, hd⟩,
   λ hf, hr, hd⟩, hf, hr, hd⟩⟩

lemma is_dedekind_domain_dvr_equiv_is_dedekind_domain_inv :
  is_dedekind_domain_dvr A  is_dedekind_domain_inv A :=
begin
  split,
    {
      intro,
      rw is_dedekind_domain_inv_iff,
      sorry
    },
    {
      intro,
      rw is_dedekind_domain_dvr_iff,
      sorry
    }
end

I'm not too sure why rw is_dedekind_domain_inv_iff is giving me the error

invalid rewrite tactic, failed to synthesize type class instance

but rw is_dedekind_domain_dvr_iff doesn't give me any error.

Kevin Buzzard (Jun 28 2021 at 08:02):

Your code doesn't compile for me on current master -- I get unknown identifier 'is_dedekind_domain_inv'

François Sunatori (Jun 28 2021 at 13:50):

Oh sorry, yes I was missing is_dedekind_domain_inv. The sorry are in the last lemma at the bottom:

import ring_theory.discrete_valuation_ring
import ring_theory.fractional_ideal
import ring_theory.ideal.over

variables (R A K : Type*) [comm_ring R] [integral_domain A] [field K]

/-- A ring `R` has Krull dimension at most one if all nonzero prime ideals are maximal. -/
def ring.dimension_le_one : Prop :=
 p  ( : ideal R), p.is_prime  p.is_maximal

open ideal ring

namespace ring

lemma dimension_le_one.principal_ideal_ring
  [is_principal_ideal_ring A] : dimension_le_one A :=
λ p nonzero prime, by { haveI := prime, exact is_prime.to_maximal_ideal nonzero }

lemma dimension_le_one.integral_closure [nontrivial R] [algebra R A]
  (h : dimension_le_one R) : dimension_le_one (integral_closure R A) :=
λ p ne_bot prime, by exactI
  integral_closure.is_maximal_of_is_maximal_comap p
    (h _ (integral_closure.comap_ne_bot ne_bot) infer_instance)

end ring

class is_dedekind_domain : Prop :=
(not_is_field : ¬ is_field A)
(is_noetherian_ring : is_noetherian_ring A)
(dimension_le_one : dimension_le_one A)
(is_integrally_closed : integral_closure A (fraction_ring A) = )

lemma is_dedekind_domain_iff (f : fraction_map A K) :
  is_dedekind_domain A 
    (¬ is_field A)  is_noetherian_ring A  dimension_le_one A 
    integral_closure A f.codomain =  :=
λ hf, hr, hd, hi⟩, hf, hr, hd,
  by rw [integral_closure_map_alg_equiv (fraction_ring.alg_equiv_of_quotient f),
         hi, algebra.map_bot]⟩,
 λ hf, hr, hd, hi⟩, hf, hr, hd,
  by rw [integral_closure_map_alg_equiv (fraction_ring.alg_equiv_of_quotient f).symm,
         hi, algebra.map_bot]⟩⟩

structure is_dedekind_domain_dvr : Prop :=
(not_is_field : ¬ is_field A)
(is_noetherian_ring : is_noetherian_ring A)
(is_dvr_at_nonzero_prime :  P  ( : ideal A), P.is_prime 
  discrete_valuation_ring (localization.at_prime P))

lemma is_dedekind_domain_dvr_iff :
  is_dedekind_domain_dvr A 
    (¬ is_field A)  is_noetherian_ring A 
    ( P  ( : ideal A), P.is_prime  by exactI discrete_valuation_ring (localization.at_prime P)) :=
  λ hf, hr, hd⟩, hf, hr, hd⟩,
   λ hf, hr, hd⟩, hf, hr, hd⟩⟩

section inverse

open_locale classical

variables {R₁ : Type*} [integral_domain R₁] {g : fraction_map R₁ K}
variables {I J : fractional_ideal g}

noncomputable instance : has_inv (fractional_ideal g) := λ I, 1 / I

lemma inv_eq : I⁻¹ = 1 / I := rfl

lemma inv_zero' : (0 : fractional_ideal g)⁻¹ = 0 := fractional_ideal.div_zero

lemma inv_nonzero {J : fractional_ideal g} (h : J  0) :
J⁻¹ = ⟨(1 : fractional_ideal g) / J, fractional_ideal.fractional_div_of_nonzero h :=
fractional_ideal.div_nonzero _

lemma coe_inv_of_nonzero {J : fractional_ideal g} (h : J  0) :
  (J⁻¹ : submodule R₁ g.codomain) = g.coe_submodule 1 / J :=
by { rwa inv_nonzero _, refl, assumption}

theorem right_inverse_eq (I J : fractional_ideal g) (h : I * J = 1) :
  J = I⁻¹ :=
begin
  have hI : I  0 := fractional_ideal.ne_zero_of_mul_eq_one I J h,
  suffices h' : I * (1 / I) = 1,
  { exact (congr_arg units.inv $
      @units.ext _ _ (units.mk_of_mul_eq_one _ _ h) (units.mk_of_mul_eq_one _ _ h') rfl) },
  apply le_antisymm,
  { apply fractional_ideal.mul_le.mpr _,
    intros x hx y hy,
    rw mul_comm,
    exact (fractional_ideal.mem_div_iff_of_nonzero hI).mp hy x hx },
  rw  h,
  apply fractional_ideal.mul_left_mono I,
  apply (fractional_ideal.le_div_iff_of_nonzero hI).mpr _,
  intros y hy x hx,
  rw mul_comm,
  exact fractional_ideal.mul_mem_mul hx hy
end

theorem mul_inv_cancel_iff {I : fractional_ideal g} :
  I * I⁻¹ = 1   J, I * J = 1 :=
λ h, I⁻¹, h⟩, λ J, hJ⟩, by rwa [ @right_inverse_eq _ _ _ _ _ I J hJ]⟩

variables {K' : Type*} [field K'] {g' : fraction_map R₁ K'}

@[simp] lemma map_inv (I : fractional_ideal g) (h : g.codomain ≃ₐ[R₁] g'.codomain) :
  (I⁻¹).map (h : g.codomain →ₐ[R₁] g'.codomain) = (I.map h)⁻¹ :=
by rw [inv_eq, fractional_ideal.map_div, fractional_ideal.map_one, inv_eq]

open_locale classical

open submodule submodule.is_principal

@[simp] lemma span_singleton_inv (x : g.codomain) :
  (fractional_ideal.span_singleton x)⁻¹ = fractional_ideal.span_singleton (x⁻¹) :=
fractional_ideal.one_div_span_singleton x

lemma mul_generator_self_inv (I : fractional_ideal g)
  [submodule.is_principal (I : submodule R₁ g.codomain)] (h : I  0) :
  I * fractional_ideal.span_singleton (generator (I : submodule R₁ g.codomain))⁻¹ = 1 :=
begin
  -- Rewrite only the `I` that appears alone.
  conv_lhs { congr, rw fractional_ideal.eq_span_singleton_of_principal I },
  rw [fractional_ideal.span_singleton_mul_span_singleton, mul_inv_cancel,
    fractional_ideal.span_singleton_one],
  intro generator_I_eq_zero,
  apply h,
  rw [fractional_ideal.eq_span_singleton_of_principal I, generator_I_eq_zero,
    fractional_ideal.span_singleton_zero]
end

lemma invertible_of_principal (I : fractional_ideal g)
  [submodule.is_principal (I : submodule R₁ g.codomain)] (h : I  0) :
  I * I⁻¹ = 1 :=
(fractional_ideal.mul_div_self_cancel_iff).mpr
  fractional_ideal.span_singleton (generator (I : submodule R₁ g.codomain))⁻¹,
    @mul_generator_self_inv _ _ _ _ _ I _ h

lemma invertible_iff_generator_nonzero (I : fractional_ideal g)
  [submodule.is_principal (I : submodule R₁ g.codomain)] :
  I * I⁻¹ = 1  generator (I : submodule R₁ g.codomain)  0 :=
begin
  split,
  { intros hI hg,
    apply fractional_ideal.ne_zero_of_mul_eq_one _ _ hI,
    rw [fractional_ideal.eq_span_singleton_of_principal I, hg,
        fractional_ideal.span_singleton_zero] },
  { intro hg,
    apply invertible_of_principal,
    rw [fractional_ideal.eq_span_singleton_of_principal I],
    intro hI,
    have := fractional_ideal.mem_span_singleton_self (generator (I : submodule R₁ g.codomain)),
    rw [hI, fractional_ideal.mem_zero_iff] at this,
    contradiction }
end

lemma is_principal_inv (I : fractional_ideal g)
  [submodule.is_principal (I : submodule R₁ g.codomain)] (h : I  0) :
  submodule.is_principal (I⁻¹).1 :=
begin
  rw [fractional_ideal.val_eq_coe, fractional_ideal.is_principal_iff],
  use (generator (I : submodule R₁ g.codomain))⁻¹,
  have hI : I  * fractional_ideal.span_singleton ((generator (I : submodule R₁ g.codomain))⁻¹)  = 1,
  apply @mul_generator_self_inv _ _ _ _ _ I _ h,
  apply (@right_inverse_eq _ _ _ _ _ I (fractional_ideal.span_singleton
    ( (generator (I : submodule R₁ g.codomain))⁻¹)) hI).symm,
end

structure is_dedekind_domain_inv : Prop :=
(not_is_field : ¬ is_field A)
(mul_inv_cancel :  I  ( : fractional_ideal (fraction_ring.of A)), I * (1 / I) = 1)

open ring.fractional_ideal

lemma is_dedekind_domain_inv_iff (f : fraction_map A K) :
  is_dedekind_domain_inv A 
    (¬ is_field A)  ( I  ( : fractional_ideal f), I * I⁻¹ = 1) :=
begin
  set h : (fraction_ring.of A).codomain ≃ₐ[A] f.codomain := fraction_ring.alg_equiv_of_quotient f,
  split; rintros hf, hi; use hf; intros I hI,
  { have := hi (map h.symm I) (map_ne_zero _ hI),
    convert congr_arg (map (h : (fraction_ring.of A).codomain →ₐ[A] f.codomain)) this;
      simp only [map_symm_map, map_one, fractional_ideal.map_mul, fractional_ideal.map_div,
                 inv_eq] },
  { have := hi (map h I) (map_ne_zero _ hI),
    convert congr_arg (map (h.symm : f.codomain →ₐ[A] (fraction_ring.of A).codomain)) this;
      simp only [map_map_symm, map_one, fractional_ideal.map_mul, fractional_ideal.map_div,
                 inv_eq] },
end

lemma is_dedekind_domain_dvr_equiv_is_dedekind_domain_inv :
  is_dedekind_domain_dvr A  is_dedekind_domain_inv A :=
begin
  split,
    {
      intro,
      rw is_dedekind_domain_dvr_iff at ,
      rw is_dedekind_domain_inv_iff,
      sorry
    },
    {
      intro,
      rw is_dedekind_domain_dvr_iff,
      sorry
    }
end

end inverse

Last updated: Dec 20 2023 at 11:08 UTC