Zulip Chat Archive
Stream: maths
Topic: is_open {true}
Chris Hughes (May 16 2019 at 19:33):
how to prove is_open {true}
? This should be very easy.
Chris Hughes (May 16 2019 at 19:33):
The topology on Prop
is generate_from {true}
Sebastien Gouezel (May 16 2019 at 19:48):
library_search
says exact is_open_discrete {to_bool true}
Sebastien Gouezel (May 16 2019 at 19:49):
Sorry, my message is for true
in bool
. In Prop
, library_search
says exact is_open_singleton_true
.
Sebastien Gouezel (May 16 2019 at 19:51):
simp
also works, by the way.
Jesse Michael Han (May 16 2019 at 20:01):
MWE:
import topology.order example : is_open ({true} : set Prop) := is_open_singleton_true
Jesse Michael Han (May 16 2019 at 20:05):
but that lemma is just a thin wrapper around
example : is_open ({true} : set Prop) := generate_open.basic _ (by exact or.inl rfl)
Last updated: Dec 20 2023 at 11:08 UTC