Zulip Chat Archive

Stream: maths

Topic: more limit stuff


Johan Commelin (Dec 17 2018 at 04:08):

I've got the following lemmas

lemma colimit.pre_map {K : Type v} [small_category K] [has_colimits_of_shape.{u v} K C]
  (F : J  C) {E₁ E₂ : K  J} (α : E₁  E₂) :
  colimit.pre F E₁ = colim.map (whisker_right α F)  colimit.pre F E₂ :=
begin
  ext1, dsimp,
  conv {to_rhs, rw category.assoc},
  simp,
end

lemma colimit.pre_id (F : J  C) :
colimit.pre F (functor.id _) = colim.map (functor.left_unitor F).hom := by tidy

lemma colimit.pre_comp
{K : Type v} [small_category K] [has_colimits_of_shape.{u v} K C]
{L : Type v} [small_category L] [has_colimits_of_shape.{u v} L C]
(F : J  C) (E : K  J) (D : L  K) :
colimit.pre F (D  E) = colim.map (functor.associator D E F).hom
 colimit.pre _ D  colimit.pre F E :=
begin
  tidy {trace_result := tt},
  erw  category.assoc,
  erw colim_ι_map (functor.associator D E F).hom j,
  dsimp [functor.associator],
  simp,
  erw is_colimit.fac,
  refl
end

Should I put these (and their duals) into a new PR? Or should this be cast into some other form first?

Reid Barton (Dec 17 2018 at 04:28):

Isn't the third one colimit.pre_pre?

Reid Barton (Dec 17 2018 at 04:28):

Oh I missed the actual second one.

Reid Barton (Dec 17 2018 at 04:29):

The associator is a definitional equality, so you don't really need it.

Reid Barton (Dec 17 2018 at 04:31):

Though sometimes Lean tries to be too smart, and gets confused by the reassociation unless you spell things out for it.

Johan Commelin (Dec 17 2018 at 05:53):

Aah, I see. So the third one can go. That leaves the other 2.


Last updated: Dec 20 2023 at 11:08 UTC