Zulip Chat Archive
Stream: maths
Topic: more limit stuff
Johan Commelin (Dec 17 2018 at 04:08):
I've got the following lemmas
lemma colimit.pre_map {K : Type v} [small_category K] [has_colimits_of_shape.{u v} K C] (F : J ⥤ C) {E₁ E₂ : K ⥤ J} (α : E₁ ⟹ E₂) : colimit.pre F E₁ = colim.map (whisker_right α F) ≫ colimit.pre F E₂ := begin ext1, dsimp, conv {to_rhs, rw ←category.assoc}, simp, end lemma colimit.pre_id (F : J ⥤ C) : colimit.pre F (functor.id _) = colim.map (functor.left_unitor F).hom := by tidy lemma colimit.pre_comp {K : Type v} [small_category K] [has_colimits_of_shape.{u v} K C] {L : Type v} [small_category L] [has_colimits_of_shape.{u v} L C] (F : J ⥤ C) (E : K ⥤ J) (D : L ⥤ K) : colimit.pre F (D ⋙ E) = colim.map (functor.associator D E F).hom ≫ colimit.pre _ D ≫ colimit.pre F E := begin tidy {trace_result := tt}, erw ← category.assoc, erw colim_ι_map (functor.associator D E F).hom j, dsimp [functor.associator], simp, erw is_colimit.fac, refl end
Should I put these (and their duals) into a new PR? Or should this be cast into some other form first?
Reid Barton (Dec 17 2018 at 04:28):
Isn't the third one colimit.pre_pre
?
Reid Barton (Dec 17 2018 at 04:28):
Oh I missed the actual second one.
Reid Barton (Dec 17 2018 at 04:29):
The associator is a definitional equality, so you don't really need it.
Reid Barton (Dec 17 2018 at 04:31):
Though sometimes Lean tries to be too smart, and gets confused by the reassociation unless you spell things out for it.
Johan Commelin (Dec 17 2018 at 05:53):
Aah, I see. So the third one can go. That leaves the other 2.
Last updated: Dec 20 2023 at 11:08 UTC