Zulip Chat Archive
Stream: maths
Topic: order topology
Kevin Kappelmann (Jul 26 2019 at 12:13):
I did some convergence proof of a sequence using the standard epsilontics approach. I then asked @Patrick Massot how to use fabulous filters instead, and we ended up writing these definitions/instances and lemma:
local notation `|` x `|` := abs x variable {α : Type*} namespace partial_order section topology open topological_space set variable [partial_order α] def topology : topological_space α := generate_from {s : set α | ∃ (a : α), s = {b : α | a < b} ∨ s = {b : α | b < a}} local attribute [instance] topology def order_topology : orderable_topology α := ⟨rfl⟩ end topology end partial_order namespace decidable_linear_ordered_comm_group variable [decidable_linear_ordered_comm_group α] local attribute [instance] partial_order.topology local attribute [instance] partial_order.order_topology lemma order_topology.tendsto_iff_epsilon {β : Type*} (f : β → α) (z : filter β) (a : α) : filter.tendsto f z (nhds a) ↔ ∀ ε > (0 : α), {b : β | |f b - a| < ε} ∈ z := begin rw (show _, from @tendsto_orderable α), -- does not work without `show` for some reason split, { rintros ⟨hyp_lt_a, hyp_gt_a⟩ ε ε_pos, suffices : {b : β | f b - a < ε ∧ a - f b < ε} ∈ z, by simpa only [abs_sub_lt_iff], have set1 : {b : β | a - f b < ε} ∈ z, by { have : {b : β | a - ε < f b} ∈ z, from hyp_lt_a (a - ε) (sub_lt_self a ε_pos), have : ∀ b, a - f b < ε ↔ a - ε < f b, by { intro _, exact sub_lt }, simpa only [this] }, have set2 : {b : β | f b - a < ε} ∈ z, by { have : {b : β | a + ε > f b} ∈ z, from hyp_gt_a (a + ε) (lt_add_of_pos_right a ε_pos), have : ∀ b, f b - a < ε ↔ a + ε > f b, by { intro _, exact sub_lt_iff_lt_add' }, simpa only [this] }, exact (z.inter_sets set2 set1) }, { assume hyp_ε_pos, split, { assume a' a'_lt_a, let ε := a - a', have : {b : β | |f b - a| < ε} ∈ z, from hyp_ε_pos ε (sub_pos.elim_right a'_lt_a), have : {b : β | f b - a < ε ∧ a - f b < ε} ∈ z, by simpa only [abs_sub_lt_iff] using this, have : {b : β | a - f b < ε} ∈ z, from z.sets_of_superset this (set.inter_subset_right _ _), have : ∀ b, a' < f b ↔ a - f b < ε, by {intro b, rw [sub_lt, sub_sub_self] }, simpa only [this] }, { assume a' a'_gt_a, let ε := a' - a, have : {b : β | |f b - a| < ε} ∈ z, from hyp_ε_pos ε (sub_pos.elim_right a'_gt_a), have : {b : β | f b - a < ε ∧ a - f b < ε} ∈ z, by simpa only [abs_sub_lt_iff] using this, have : {b : β | f b - a < ε} ∈ z, from z.sets_of_superset this (set.inter_subset_left _ _), have : ∀ b, a' > f b ↔ f b - a < ε, by {intro b, simp [lt_sub_iff_add_lt] }, simpa only [this] }} end end decidable_linear_ordered_comm_group
I have no clue about Lean's topology library. Should this all live in mathlib? If so, where? Are there duplicates?
Last updated: Dec 20 2023 at 11:08 UTC