Zulip Chat Archive
Stream: maths
Topic: size of a finite set
Kevin Buzzard (Jan 30 2020 at 14:21):
import data.set.finite example (α : Type*) (S : set α) (hSf : set.finite S) (d : ℕ) (hS : @fintype.card S (set.finite.fintype hSf) = d + 1) (s : α) (hs : s ∈ S) : @fintype.card (S \ {s} : set α) (set.finite.fintype (set.finite_subset hSf $ set.diff_subset _ _)) = d := sorry
Is this what I should be doing? I am working with subalgebras of an algebra generated by a subset and I want to use results like this, so I went with set.finite
rather than finset
. But I now want to prove things by induction on the size of the set and I'm running into issues such as the above.
Chris Hughes (Jan 30 2020 at 14:23):
There should a card
function on all types, that is noncomputable and returns 0
if the set is infinite.
Kevin Buzzard (Jan 30 2020 at 14:24):
The type in question here is presumably subtype \alpha
? I am guessing we already have some card
function in the cardinal library, and then we could have some function from cardinals to nat sending anything infinite to zero?
Kevin Buzzard (Jan 30 2020 at 14:24):
Oh -- you mean on Type
?
Chris Hughes (Jan 30 2020 at 14:25):
Yes. Might as well be done like that and then cardinalities of sets are defeq to the cardinality of the corresponding subtype.
Last updated: Dec 20 2023 at 11:08 UTC