Zulip Chat Archive
Stream: maths
Topic: supr and val
Kevin Buzzard (Dec 30 2019 at 09:10):
I was hoping this would be rfl
:
import topology.opens open topological_space lemma what_is_this_called {X Y : Type*} [topological_space X] [topological_space Y] {f : X → Y} (hf : continuous f) {γ : Type*} (ι : γ → opens Y) : (⨆ (j : γ), hf.comap (ι j)).val = ⋃ (j : γ), f ⁻¹' (ι j).val := begin sorry end
This is surely much easier than I am making it...
Kevin Buzzard (Dec 30 2019 at 09:47):
opens.Sup_s
is helpful!
lemma what_is_this_called {X Y : Type*} [topological_space X] [topological_space Y] {f : X → Y} (hf : continuous f) {γ : Type*} (ι : γ → opens Y) : (⨆ (j : γ), hf.comap (ι j)).val = ⋃ (j : γ), f ⁻¹' (ι j).val := begin unfold lattice.supr, rw opens.Sup_s, ext x, split, rintro ⟨V, HV, H⟩, use V, existsi _, exact H, convert HV, ext Z, split, rintro ⟨i, rfl⟩, split, split, use i, refl, rintro ⟨_, ⟨i, rfl⟩, rfl⟩, use i, refl, rintro ⟨_, ⟨j, rfl⟩, h3⟩, rw set.mem_sUnion, use f ⁻¹' (ι j).val, existsi _, exact h3, existsi hf.comap (ι j), split, use j, refl, end
Chris Hughes (Dec 30 2019 at 09:54):
The lemma opens.supr_val
seems to be missing
lemma opens.supr_val {X γ : Type*} [topological_space X] (ι : γ → opens X) : (⨆ i, ι i).val = ⨆ i, (ι i).val := @galois_connection.l_supr (opens X) (set X) _ _ _ (subtype.val : opens X → set X) opens.interior opens.gc _ lemma what_is_this_called {X Y : Type*} [topological_space X] [topological_space Y] {f : X → Y} (hf : continuous f) {γ : Type*} (ι : γ → opens Y) : (⨆ (j : γ), hf.comap (ι j)).val = ⋃ (j : γ), f ⁻¹' (ι j).val := begin simp [set.ext_iff, opens.supr_val, continuous.comap], end
Chris Hughes (Dec 30 2019 at 09:54):
Also, things like continuous.mem_comap
would be good simp lemmas.
Last updated: Dec 20 2023 at 11:08 UTC