Zulip Chat Archive
Stream: Is there code for X?
Topic: 0 ≤ b → ((a / b : ℤ) : ℚ) ≤ (a / b : ℚ)
Scott Morrison (Jul 06 2023 at 00:40):
example (a b : ℤ) (w : 0 ≤ b) : ((a / b : ℤ) : ℚ) ≤ (a / b : ℚ) := sorry
Location in library / proof / name?
(slim_check
agrees there are no counterexamples due to misunderstanding rounding!)
Yury G. Kudryashov (Jul 06 2023 at 01:14):
import Mathlib.Data.Rat.Order
import Mathlib.Algebra.Order.Field.Basic
example (a b : ℤ) (w : 0 ≤ b) : ((a / b : ℤ) : ℚ) ≤ (a / b : ℚ) := by
rcases w.eq_or_lt with rfl | hb;
· simp [Int.ediv_zero]
· rw [le_div_iff (Int.cast_pos.2 hb)]
norm_cast
exact Int.ediv_mul_le _ hb.ne'
About location: #find_home
?
Yury G. Kudryashov (Jul 06 2023 at 01:15):
If we move lemmas about Rat
to Std
, then you may need a version of le_div_iff
.
Yaël Dillies (Jul 06 2023 at 07:33):
algebra.order.floor
Yaël Dillies (Jul 06 2023 at 07:33):
Your lemma is basically docs3#int.floor_le
Ruben Van de Velde (Jul 06 2023 at 07:45):
Looking at the code, docs#Int.floor_le might be more useful, but I don't see anything similar to docs#Nat.floor_div_eq_div for Int on first sight
Last updated: Dec 20 2023 at 11:08 UTC