Zulip Chat Archive

Stream: Is there code for X?

Topic: Basic set_of lemmas


Vincent Beffara (May 15 2022 at 15:06):

Do we have these?

example {α : Type*} {P : α  Prop} (h : {x : α | P x} = ) (x : α) : ¬ P x :=
(h.symm  set.not_mem_empty x : x  {x : α | P x})

example {α : Type*} {P : α  Prop} (h : {x : α | P x} = set.univ) (x : α) : P x :=
(h.symm  set.mem_univ x : x  {x : α | P x})

(They both should also essentially be congr_fun h.)

Yaël Dillies (May 15 2022 at 15:16):

docs#set.eq_univ_iff_forall_mem

Vincent Beffara (May 15 2022 at 19:31):

Actually, docs#set.eq_univ_iff_forall and docs#set.eq_empty_iff_forall_not_mem - thanks!


Last updated: Dec 20 2023 at 11:08 UTC