Zulip Chat Archive
Stream: Is there code for X?
Topic: Basic set_of lemmas
Vincent Beffara (May 15 2022 at 15:06):
Do we have these?
example {α : Type*} {P : α → Prop} (h : {x : α | P x} = ∅) (x : α) : ¬ P x :=
(h.symm ▸ set.not_mem_empty x : x ∉ {x : α | P x})
example {α : Type*} {P : α → Prop} (h : {x : α | P x} = set.univ) (x : α) : P x :=
(h.symm ▸ set.mem_univ x : x ∈ {x : α | P x})
(They both should also essentially be congr_fun h
.)
Yaël Dillies (May 15 2022 at 15:16):
docs#set.eq_univ_iff_forall_mem
Vincent Beffara (May 15 2022 at 19:31):
Actually, docs#set.eq_univ_iff_forall and docs#set.eq_empty_iff_forall_not_mem - thanks!
Last updated: Dec 20 2023 at 11:08 UTC