Zulip Chat Archive

Stream: Is there code for X?

Topic: Conditional expectation of L^2 is L^2


Yaël Dillies (Jan 20 2025 at 07:01):

I am still working on defining the conditional variance. Do we have that the L^2 norm of μ[f | m] is less than the L^2 norm of f?

Yaël Dillies (Jan 20 2025 at 07:01):

Here is my attempt:

import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic

namespace MeasureTheory
variable {Ω R E : Type*} {f : Ω  E}
  {m m₀ : MeasurableSpace Ω} {μ : Measure Ω} {s : Set Ω}
  [NormedAddCommGroup E] [NormedSpace  E] [CompleteSpace E]

@[simp] alias Memℒp.zero := zero_memℒp

lemma eLpNorm_condexp_le : eLpNorm (μ[f | m]) 2 μ  eLpNorm f 2 μ := sorry

protected lemma Memℒp.condexp (hf : Memℒp f 2 μ) : Memℒp (μ[f | m]) 2 μ := by
  by_cases hm : m  m₀
  · exact (stronglyMeasurable_condexp.mono hm).aestronglyMeasurable,
      eLpNorm_condexp_le.trans_lt hf.eLpNorm_lt_top
  · simp [condexp_of_not_le hm]

Etienne Marion (Jan 20 2025 at 07:54):

Does docs#MeasureTheory.norm_condexpL2_le help?

Rémy Degenne (Jan 20 2025 at 08:22):

The right thing to do would be to prove Jensen's inequality for the conditional expectation, which should be this:

import Mathlib
open ProbabilityTheory MeasureTheory

example {α X : Type*} {m  : MeasurableSpace α} [NormedAddCommGroup X] [NormedSpace  X]
    [CompleteSpace X]
    (hm : m  ) {μ : Measure α} [SigmaFinite (μ.trim hm)]
    {f : α  X} {φ : X  } (hφ_cvx : ConvexOn  Set.univ φ) (hφ_cont : LowerSemicontinuous φ)
    (hf_int : Integrable f μ) (hφ_int : Integrable (φ  f) μ) :
    ∀ᵐ x μ, φ ((μ[f | m]) x)  (μ[φ  f | m]) x :=
  sorry

For a reference, see Hytönen et al., Analysis in Banach Spaces (volume 1), proposition 2.6.29 (conditional Jensen) and corollary 2.6.30 (Lp-contractivity).
Let me tag @Alex Nguyen who was working on that a few weeks ago.

Rémy Degenne (Jan 20 2025 at 08:24):

It's also the last missing piece for a proof of the data-processing inequality for f-divergences that @Lorenzo Luccioli talked about at Lean Together.


Last updated: May 02 2025 at 03:31 UTC