Zulip Chat Archive
Stream: Is there code for X?
Topic: Conditional expectation of L^2 is L^2
Yaël Dillies (Jan 20 2025 at 07:01):
I am still working on defining the conditional variance. Do we have that the L^2 norm of μ[f | m]
is less than the L^2 norm of f
?
Yaël Dillies (Jan 20 2025 at 07:01):
Here is my attempt:
import Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic
namespace MeasureTheory
variable {Ω R E : Type*} {f : Ω → E}
{m m₀ : MeasurableSpace Ω} {μ : Measure Ω} {s : Set Ω}
[NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
@[simp] alias Memℒp.zero := zero_memℒp
lemma eLpNorm_condexp_le : eLpNorm (μ[f | m]) 2 μ ≤ eLpNorm f 2 μ := sorry
protected lemma Memℒp.condexp (hf : Memℒp f 2 μ) : Memℒp (μ[f | m]) 2 μ := by
by_cases hm : m ≤ m₀
· exact ⟨(stronglyMeasurable_condexp.mono hm).aestronglyMeasurable,
eLpNorm_condexp_le.trans_lt hf.eLpNorm_lt_top⟩
· simp [condexp_of_not_le hm]
Etienne Marion (Jan 20 2025 at 07:54):
Does docs#MeasureTheory.norm_condexpL2_le help?
Rémy Degenne (Jan 20 2025 at 08:22):
The right thing to do would be to prove Jensen's inequality for the conditional expectation, which should be this:
import Mathlib
open ProbabilityTheory MeasureTheory
example {α X : Type*} {m mα : MeasurableSpace α} [NormedAddCommGroup X] [NormedSpace ℝ X]
[CompleteSpace X]
(hm : m ≤ mα) {μ : Measure α} [SigmaFinite (μ.trim hm)]
{f : α → X} {φ : X → ℝ} (hφ_cvx : ConvexOn ℝ Set.univ φ) (hφ_cont : LowerSemicontinuous φ)
(hf_int : Integrable f μ) (hφ_int : Integrable (φ ∘ f) μ) :
∀ᵐ x ∂μ, φ ((μ[f | m]) x) ≤ (μ[φ ∘ f | m]) x :=
sorry
For a reference, see Hytönen et al., Analysis in Banach Spaces (volume 1), proposition 2.6.29 (conditional Jensen) and corollary 2.6.30 (Lp-contractivity).
Let me tag @Alex Nguyen who was working on that a few weeks ago.
Rémy Degenne (Jan 20 2025 at 08:24):
It's also the last missing piece for a proof of the data-processing inequality for f-divergences that @Lorenzo Luccioli talked about at Lean Together.
Last updated: May 02 2025 at 03:31 UTC