Zulip Chat Archive
Stream: Is there code for X?
Topic: Constant functions are analytic
Vincent Beffara (Sep 16 2022 at 16:19):
This has to be in mathlib somewhere, but I couldn't find it:
def const_formal_multilinear_series (c : E) : formal_multilinear_series 𝕜 𝕜 E :=
λ n, dite (n = 0) (λ h, by { rw h; exact continuous_multilinear_map.curry0 _ _ c }) (λ _, 0)
lemma has_fpower_series_at_const {c : E} {z : 𝕜} :
has_fpower_series_at (λ _, c) (const_formal_multilinear_series c) z :=
begin
simp only [has_fpower_series_at_iff],
refine eventually_of_forall (λ z, _),
convert has_sum_single 0 _,
{ simp [const_formal_multilinear_series, formal_multilinear_series.coeff] },
{ rintro n hn,
simp [const_formal_multilinear_series, formal_multilinear_series.coeff, hn] }
end
lemma analytic_at_const {c : E} {z : 𝕜} : analytic_at 𝕜 (λ _, c) z :=
⟨const_formal_multilinear_series c, has_fpower_series_at_const⟩
lemma analytic_on_const {c : E} : analytic_on 𝕜 (λ _, c) U :=
λ z _, analytic_at_const
Where should I look?
Eric Rodriguez (Sep 16 2022 at 16:22):
ctrl+f-ing analytic_on
on all of mathlib doesn't inspire much hope for this existing
Vincent Beffara (Sep 16 2022 at 16:23):
I applied the same algorithm and failed too :-(
Sebastien Gouezel (Sep 16 2022 at 16:53):
Yes, it doesn't seem to be here!
Anatole Dedecker (Sep 16 2022 at 17:10):
Yes we don’t have this (see this comment)
Vincent Beffara (Sep 16 2022 at 17:28):
Hm, it was a comment on my own PR. I should have done what you asked :sweat_smile:
Last updated: Dec 20 2023 at 11:08 UTC