Zulip Chat Archive
Stream: Is there code for X?
Topic: Convergent implies bounded
Heather Macbeth (Nov 23 2021 at 00:49):
Can't seem to find this in the library -- do we have it? I would take either a form for orders,
example {ι : Type*} {α : Type*} [linear_order α] [topological_space α] [order_topology α]
{f : ι → α} (a : α) (hf : tendsto f cofinite (𝓝 a)) :
bdd_above (set.range f) :=
or for metric spaces,
example {ι : Type*} {α : Type*} [metric_space α] {f : ι → α} (a : α)
(hf : tendsto f cofinite (𝓝 a)) : metric.bounded (set.range f) :=
Heather Macbeth (Nov 23 2021 at 00:51):
Maybe this breaks into two lemmas: (1) convergent implies eventually bounded; (2) for filter.cofinite
, eventually bounded implies bounded.
Heather Macbeth (Nov 23 2021 at 00:52):
(I have messy proofs which I'll PR if nothing elegant is available.)
Yury G. Kudryashov (Nov 23 2021 at 04:07):
We have docs#cauchy_seq_bdd
Yury G. Kudryashov (Nov 23 2021 at 04:07):
It comes before the definition of metric.bounded
Heather Macbeth (Nov 23 2021 at 04:21):
That is for domain ι = ℕ
though, I would like something more general.
Yury G. Kudryashov (Nov 23 2021 at 05:04):
import topology.metric_space.basic
/-!
-/
open filter set metric
open_locale uniformity filter topological_space
variables {α ι : Type*} [pseudo_metric_space α] {f : ι → α} {a : α}
lemma bounded_range_of_tendsto_cofinite_uniformity
(hf : tendsto (prod.map f f) (cofinite ×ᶠ cofinite) (𝓤 α)) :
bounded (range f) :=
begin
rcases (has_basis_cofinite.prod_self.tendsto_iff uniformity_basis_dist).1 hf 1 zero_lt_one
with ⟨s, hsf, hs1⟩,
rw [← image_univ, ← union_compl_self s, image_union, bounded_union],
use [(hsf.image f).bounded, 1],
rintro _ _ ⟨x, hx, rfl⟩ ⟨y, hy, rfl⟩,
exact le_of_lt (hs1 (x, y) ⟨hx, hy⟩)
end
lemma bounded_range_of_cauchy_map_cofinite (hf : cauchy (map f cofinite)) : bounded (range f) :=
bounded_range_of_tendsto_cofinite_uniformity $ (cauchy_map_iff.1 hf).2
lemma bounded_range_of_tendsto_cofinite (hf : tendsto f cofinite (𝓝 a)) : bounded (range f) :=
bounded_range_of_tendsto_cofinite_uniformity $
(hf.prod_map hf).mono_right $ nhds_prod_eq.symm.trans_le (nhds_le_uniformity a)
Yury G. Kudryashov (Nov 23 2021 at 05:05):
It needs
lemma has_basis_cofinite : has_basis cofinite (λ s : set α, s.finite) compl :=
+⟨λ s, ⟨λ h, ⟨sᶜ, h, (compl_compl s).subset⟩, λ ⟨t, htf, hts⟩, htf.subset $ compl_subset_comm.2 hts⟩⟩
Yury G. Kudryashov (Nov 23 2021 at 05:08):
Heather Macbeth (Nov 23 2021 at 05:09):
Very nice! It is interesting to me that this proof for the metric version does not obviously translate to a proof for the order version (fine for me, I only need it for the reals).
Yury G. Kudryashov (Nov 23 2021 at 06:09):
Yury G. Kudryashov (Nov 23 2021 at 07:35):
UPD: we have docs#filter.tendsto.is_bounded_under_le.
Yury G. Kudryashov (Nov 23 2021 at 07:36):
I'm going to adjust #10424 to this API
Last updated: Dec 20 2023 at 11:08 UTC