Zulip Chat Archive
Stream: Is there code for X?
Topic: Derivative of transition map is in GL
Dominic Steinitz (Mar 15 2025 at 10:37):
So far I have this but maybe there is better way of approaching it
import Mathlib
open SmoothManifoldWithCorners
open scoped Manifold
noncomputable
def GLBundle {n : ℕ} : FiberBundleCore
(atlas (EuclideanSpace ℝ (Fin n)) (Metric.sphere (0 : EuclideanSpace ℝ (Fin (n + 1))) 1))
(Metric.sphere (0 : EuclideanSpace ℝ (Fin (n + 1))) 1)
(GL (Fin n) ℝ)
where
baseSet i := i.1.source
isOpen_baseSet i := i.1.open_source
indexAt := achart (EuclideanSpace ℝ (Fin n))
mem_baseSet_at := mem_chart_source (EuclideanSpace ℝ (Fin n))
coordChange i j x v := by
let ii := i.1
have h1 : i.1 ∈ atlas (EuclideanSpace ℝ (Fin n)) ↑(Metric.sphere 0 1) := i.2
have h2 : j.1 ∈ atlas (EuclideanSpace ℝ (Fin n)) ↑(Metric.sphere 0 1) := j.2
have h3 : (i.1).symm ≫ₕ j.1 ∈ ((contDiffGroupoid ⊤) (𝓡 n)) := HasGroupoid.compatible h1 h2
have h4 : (j.1).symm ≫ₕ i.1 ∈ ((contDiffGroupoid ⊤) (𝓡 n)) := HasGroupoid.compatible h2 h1
let tl := (fderiv ℝ (j.1 ∘ (i.1).symm) (i.1 x)).toLinearMap
let B := Pi.basisFun ℝ (Fin n)
let tm := LinearMap.toMatrix B B tl
let (ntm : Matrix (Fin n) (Fin n) ℝ) := (tm * v)
-- We need a proof that ntm has non-zero determinant
exact (sorry : GL (Fin n) ℝ)
coordChange_self := sorry
continuousOn_coordChange := sorry
coordChange_comp := sorry
Last updated: May 02 2025 at 03:31 UTC