Zulip Chat Archive

Stream: Is there code for X?

Topic: DirectSum.of


Madison Crim (Feb 04 2025 at 18:23):

I have a finite direct sum of a direct product and I'm trying to show I can reconstruct it's elements from the DirectSum.of construction. Can someone please help?

import Mathlib

open DirectSum

example {ι' : Type*} {ι : Type*} {N : ι  ι'  Type*}
  [inst : (i : ι)  (i' : ι')  AddCommGroup (N i i')]
  [inst_1 : Fintype ι'] [inst_2 : DecidableEq ι']
  (nm :  (i' : ι'), (i : ι)  N i i') (j : ι')  (i : ι) :
  ( x : ι', (of (fun i'  N i i') x) (nm x i)) j = nm j i :=
sorry

Andrew Yang (Feb 04 2025 at 18:46):

The key is probably docs#DirectSum.sum_univ_of. But the goal seems very strange to me. In particular nm is of type iiNi,i\bigoplus_{i'} \prod_{i} N_{i, i'} and not i,iNi,i\bigoplus_{i', i} N_{i, i'}

Solution


Last updated: May 02 2025 at 03:31 UTC