Zulip Chat Archive
Stream: Is there code for X?
Topic: Exactness in opposite category
Jujian Zhang (Feb 07 2022 at 17:53):
If we have [exact f g]
, do we have [exact g.op f.op]
in mathlib?
import algebra.homology.exact
open category_theory
open category_theory.limits
universes v u
namespace category_theory
variables {C : Type u} [category.{v} C]
instance exact.op [has_zero_morphisms C] [has_equalizers C] [has_images C]
[has_equalizers Cᵒᵖ] [has_images Cᵒᵖ] {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z} [exact f g] :
exact g.op f.op :=
⟨begin
have w : f ≫ g = 0:= exact.w,
convert congr_arg quiver.hom.op w,
end, ⟨λ A h1 h2 eq1, begin
sorry,
end⟩⟩
end category_theory
Kevin Buzzard (Feb 07 2022 at 17:59):
@Amelia Livingston were you thinking about this recently?
Johan Commelin (Feb 07 2022 at 18:08):
lean-liquid$ rg "exact g.op f.op"
src/for_mathlib/exact_seq.lean
101:instance [exact f g] : exact g.op f.op :=
280: have hgf : exact g.op f.op, { resetI, apply_instance },
Kevin Buzzard (Feb 07 2022 at 18:09):
who needs library-search when you have ripgrep
Last updated: Dec 20 2023 at 11:08 UTC