Zulip Chat Archive
Stream: Is there code for X?
Topic: Finset sum lt iff sum of coerced
Malvin Gattinger (Jan 27 2024 at 21:05):
Is there a theorem like this already in mathlib that I did not find? Or other theorems to for Finset.sum
and ofNat
?
import Mathlib.Data.Finset.Basic
import Mathlib.Algebra.BigOperators.Order
theorem extracted {X Y : Finset α} {f : α → Nat} :
Finset.sum X f < Finset.sum Y f
↔ (Finset.sum X fun x => (↑(f x) : Int)) < Finset.sum Y fun x => ↑(f x) :=
by
sorry
Kevin Buzzard (Jan 27 2024 at 21:42):
import Mathlib.Tactic
variable (α : Type 32)
theorem extracted {X Y : Finset α} {f : α → Nat} :
Finset.sum X f < Finset.sum Y f
↔ (Finset.sum X fun x => (↑(f x) : Int)) < Finset.sum Y fun x => ↑(f x) :=
by zify
Malvin Gattinger (Jan 28 2024 at 09:09):
Thank you!
Last updated: May 02 2025 at 03:31 UTC