Zulip Chat Archive
Stream: Is there code for X?
Topic: Hom Localized equiv Localized Hom
syur2 (Apr 05 2025 at 02:23):
First, I need the left/right exact sequence.Second, the Hom functor is left exact.
syur2 (Apr 05 2025 at 02:28):
More easily, the Hom functor map surjective to injective.
lemma Hom_inj_of_surj (f : N →ₗ[R] P) (hf : Function.Surjective f) : Function.Injective (LinearMap.lcomp R M f) := sorry
syur2 (Apr 05 2025 at 02:31):
import Mathlib
variable {R M N P: Type*} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [AddCommGroup P] [Module R P]
syur2 (Apr 05 2025 at 02:36):
Also, though no need for my code, the TensorProduct functor is right exact.
Aaron Liu (Apr 05 2025 at 02:45):
import Mathlib.LinearAlgebra.BilinearMap
variable {R M N P : Type*} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [AddCommMonoid P] [Module R P]
lemma Function.Surjective.injective_lcomp_right {f : N →ₗ[R] P} (hf : Function.Surjective f) : Function.Injective (LinearMap.lcomp R M f) := by
intro a b hab
rw [← DFunLike.coe_fn_eq] at hab ⊢
apply hf.injective_comp_right
simpa [LinearMap.lcomp_apply'] using hab
syur2 (Apr 05 2025 at 02:54):
So there is no these theorem, especially the "Hom_inj_of_surj" in Mathlib?
Aaron Liu (Apr 05 2025 at 03:09):
This is not in mathlib yet.
Junyan Xu (Apr 05 2025 at 08:50):
LinearMap.dualMap_injective_of_surjective is a special case of this.
Last updated: May 02 2025 at 03:31 UTC