Zulip Chat Archive
Stream: Is there code for X?
Topic: Interior of a set-level
Yaël Dillies (Nov 28 2021 at 18:29):
Do we something along those lines?
import topology.algebra.ordered.basic
lemma interior_le {α β : Type*} [topological_space α] [linear_order α] [order_closed_topology α]
[topological_space β] [linear_order β] [order_closed_topology β] {f g : β → α} (hf : continuous f)
(hg : continuous g) :
{b | f b < g b} ⊆ interior {b | f b ≤ g b}
I am not sure about the correct typeclasses.
Heather Macbeth (Nov 28 2021 at 18:39):
A possible simplification (if indeed my foo
is true):
import topology.algebra.ordered.basic
variables {α : Type*} [topological_space α] [linear_order α] [order_closed_topology α]
lemma foo : {p : α × α | p.1 < p.2} ⊆ interior {p | p.1 ≤ p.2} := sorry
lemma interior_le {β : Type*} [topological_space β] [linear_order β] [order_closed_topology β]
{f g : β → α} (hf : continuous f) (hg : continuous g) :
{b | f b < g b} ⊆ interior {b | f b ≤ g b} :=
begin
let F : β → α × α := λ b, (f b, g b),
show F ⁻¹' {p : α × α | p.1 < p.2} ⊆ interior (F ⁻¹' {p | p.1 ≤ p.2}),
refine (set.preimage_mono foo).trans _,
refine preimage_interior_subset_interior_preimage (hf.prod_mk hg),
end
Heather Macbeth (Nov 28 2021 at 18:42):
Ah, indeed foo
is true.
lemma foo : {p : α × α | p.1 < p.2} ⊆ interior {p | p.1 ≤ p.2} :=
begin
rw subset_interior_iff_subset_of_open,
{ rintros p (hp : p.1 < p.2),
exact hp.le },
{ exact is_open_lt_prod }
end
Heather Macbeth (Nov 28 2021 at 18:45):
And in fact we have a more elaborate pre-build lemma next to docs#is_open_lt_prod, namely docs#is_open_lt, which is basically what you originally asked for:
lemma interior_le {β : Type*} [topological_space β] [linear_order β] [order_closed_topology β]
{f g : β → α} (hf : continuous f) (hg : continuous g) :
{b | f b < g b} ⊆ interior {b | f b ≤ g b} :=
begin
rw subset_interior_iff_subset_of_open,
{ rintros p (hp : f p < g p),
exact hp.le },
{ exact is_open_lt hf hg }
end
Yaël Dillies (Nov 28 2021 at 18:51):
Uh, I knew about is_open_lt
but I couldn't get it to work in this case :sweat_smile:
Last updated: Dec 20 2023 at 11:08 UTC