Zulip Chat Archive
Stream: Is there code for X?
Topic: Linarith for real number
Casavaca (Jun 23 2024 at 09:22):
How to prove this?
example (i : ℕ) (h : i < 90) : (i : ℝ) * 2 < 180 := by ???
Edit:
example (i : ℕ) (k : ℤ) (hi : i < 90) (hk : 0 < k) : (i : ℝ) * 2 < k * 180 := by ???
Vincent Beffara (Jun 23 2024 at 09:24):
import Mathlib
example (i : ℕ) (h : i < 90) : (i : ℝ) * 2 < 180 := by
norm_cast ; omega
Casavaca (Jun 23 2024 at 09:31):
You are right. I updated the example.
Vincent Beffara (Jun 23 2024 at 09:34):
import Mathlib
example (i : ℕ) (k : ℤ) (hi : i < 90) (hk : 0 < k) : (i : ℝ) * 2 < k * 180 := by
norm_cast ; omega
:grinning_face_with_smiling_eyes:
Casavaca (Jun 23 2024 at 09:35):
You are right. I tried linarith
which doesn't work, but omega
does. Thank you.
Kim Morrison (Jun 23 2024 at 12:19):
I wonder why linarith
fails. It seems like it should be in scope.
Kim Morrison (Jun 23 2024 at 12:22):
Ah:
import Mathlib
example (i : ℕ) (k : ℤ) (hi : i < 90) (hk : 0 < k) : (i : ℝ) * 2 < k * 180 := by
norm_cast
zify at *
linarith
Last updated: May 02 2025 at 03:31 UTC