Zulip Chat Archive
Stream: Is there code for X?
Topic: Multiplicative version of CategoryTheory.equivOfFullyFaithfu
Christian Merten (Jan 08 2024 at 20:45):
Is there a multiplicative version of CategoryTheory.equivOfFullyFaithful
? I.e.
import Mathlib
open CategoryTheory Functor
def equivMulOfFullyFaithful {C : Type u} [Category.{v, u} C] {D : Type u₁}
[Category.{v₁, u₁} D] (F : C ⥤ D)
[Full F] [Faithful F] {X : C } :
End X ≃* End (F.obj X) := by
apply MulEquiv.mk'
intro f g
erw [equivOfFullyFaithful_apply, equivOfFullyFaithful_apply,
equivOfFullyFaithful_apply]
simp only [End.mul_def, map_comp]
This is essentially the equivalence version of CategoryTheory.Functor.mapEnd
. Same question for Aut
.
Yury G. Kudryashov (Jan 08 2024 at 22:40):
loogle doesn't find any: @loogle CategoryTheory.Full, MulEquiv
loogle (Jan 08 2024 at 22:40):
:shrug: nothing found
Yury G. Kudryashov (Jan 08 2024 at 22:44):
def mulEquivOfFullyFaithful {C : Type u} [Category.{v, u} C] {D : Type u₁}
[Category.{v₁, u₁} D] (F : C ⥤ D)
[Full F] [Faithful F] {X : C} :
End X ≃* End (F.obj X) where
toEquiv := equivOfFullyFaithful F
__ := mapEnd X F
Christian Merten (Jan 08 2024 at 22:51):
I added @[simps!]
(!
because lean complained about @[simps]
alone). How do I see which simp lemmas are generated?
Kevin Buzzard (Jan 08 2024 at 22:53):
You can write whatsnew in
before your declaration, or perhaps append a ?
after simps!
(not sure if this works)
Christian Merten (Jan 08 2024 at 22:54):
Adding ?
worked. Thanks! @[simps!?]
looks quite funny.
Christian Merten (Jan 08 2024 at 22:54):
Even @[simps?!]
works :D
Christian Merten (Jan 08 2024 at 23:00):
Last updated: May 02 2025 at 03:31 UTC