Zulip Chat Archive
Stream: Is there code for X?
Topic: Nat to UInt32
Asei Inoue (Jan 29 2025 at 21:53):
how to show this?
  theorem _root_.UInt32.ofNat_le_iff {m n : Nat} (hm : m < UInt32.size) (hn : n < UInt32.size)
    : UInt32.ofNat m ≤ UInt32.ofNat n ↔ m ≤ n := by
    sorry
Ruben Van de Velde (Jan 29 2025 at 22:03):
theorem _root_.UInt32.ofNat_le_iff {m n : Nat} (hm : m < UInt32.size) (hn : n < UInt32.size) :
    UInt32.ofNat m ≤ UInt32.ofNat n ↔ m ≤ n := by
  rw [UInt32.le_iff_toNat_le]
  simp only [UInt32.toNat_ofNat]
  rw [Nat.mod_eq_of_lt hm]
  rw [Nat.mod_eq_of_lt hn]
Found by searching for UInt32.ofNat, LE.le on loogle, then simp?, then rw?
Asei Inoue (Jan 29 2025 at 23:30):
@Ruben Van de Velde Thank you!
Last updated: May 02 2025 at 03:31 UTC