Zulip Chat Archive

Stream: Is there code for X?

Topic: Neighborhoods of profinite


Andrew Yang (Dec 01 2024 at 04:01):

Do we have the fact that every neighborhood in a profinite space can be shrunk into a clopen neighborhood? Concretely I'm looking for the following:

import Mathlib.Topology.Algebra.OpenSubgroup

open Topology

variable {α} [TopologicalSpace α] [CompactSpace α] [T2Space α] [TotallyDisconnectedSpace α]

theorem Profinite.exists_isClopen_of_mem_nhds {x : α} {U : Set α} (hU : U  𝓝 x) :
     K, IsClopen K  x  K  K  U := sorry

@[to_additive]
theorem Profinite.exists_subgroup_subset
    [CommGroup α] [TopologicalGroup α] {U : Set α} (hU : U  𝓝 1) :
     G : Subgroup α, IsOpen (X := α) G  (G : Set α)  U := by
  obtain K, hK, hxK, hKU := Profinite.exists_isClopen_of_mem_nhds hU
  obtain ⟨⟨G, hG, hG' := TopologicalGroup.exist_openSubgroup_sub_clopen_nhd_of_one hK hxK
  exact G, hG, hG'.trans hKU

theorem Profinite.exists_ideal_subset
    [Ring α] [TopologicalRing α] {U : Set α} (hU : U  𝓝 0) :
     I : Ideal α, IsOpen (X := α) I  (I : Set α)  U := sorry

Matt Diamond (Dec 01 2024 at 07:03):

You can solve Profinite.exists_isClopen_of_mem_nhds with isTopologicalBasis_isClopen.mem_nhds_iff.mp hU

docs#isTopologicalBasis_isClopen
docs#TopologicalSpace.IsTopologicalBasis.mem_nhds_iff

Andrew Yang (Dec 01 2024 at 14:56):

Yes that’s exactly what I want. Thanks!


Last updated: May 02 2025 at 03:31 UTC