Zulip Chat Archive
Stream: Is there code for X?
Topic: Neighborhoods of profinite
Andrew Yang (Dec 01 2024 at 04:01):
Do we have the fact that every neighborhood in a profinite space can be shrunk into a clopen neighborhood? Concretely I'm looking for the following:
import Mathlib.Topology.Algebra.OpenSubgroup
open Topology
variable {α} [TopologicalSpace α] [CompactSpace α] [T2Space α] [TotallyDisconnectedSpace α]
theorem Profinite.exists_isClopen_of_mem_nhds {x : α} {U : Set α} (hU : U ∈ 𝓝 x) :
∃ K, IsClopen K ∧ x ∈ K ∧ K ⊆ U := sorry
@[to_additive]
theorem Profinite.exists_subgroup_subset
[CommGroup α] [TopologicalGroup α] {U : Set α} (hU : U ∈ 𝓝 1) :
∃ G : Subgroup α, IsOpen (X := α) G ∧ (G : Set α) ⊆ U := by
obtain ⟨K, hK, hxK, hKU⟩ := Profinite.exists_isClopen_of_mem_nhds hU
obtain ⟨⟨G, hG⟩, hG'⟩ := TopologicalGroup.exist_openSubgroup_sub_clopen_nhd_of_one hK hxK
exact ⟨G, hG, hG'.trans hKU⟩
theorem Profinite.exists_ideal_subset
[Ring α] [TopologicalRing α] {U : Set α} (hU : U ∈ 𝓝 0) :
∃ I : Ideal α, IsOpen (X := α) I ∧ (I : Set α) ⊆ U := sorry
Matt Diamond (Dec 01 2024 at 07:03):
You can solve Profinite.exists_isClopen_of_mem_nhds
with isTopologicalBasis_isClopen.mem_nhds_iff.mp hU
docs#isTopologicalBasis_isClopen
docs#TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
Andrew Yang (Dec 01 2024 at 14:56):
Yes that’s exactly what I want. Thanks!
Last updated: May 02 2025 at 03:31 UTC