Zulip Chat Archive
Stream: Is there code for X?
Topic: Sequence limit
María Inés de Frutos Fernández (Apr 08 2022 at 15:02):
Do we have this limit computed anywhere?
import topology.metric_space.basic
import analysis.special_functions.pow
open_locale filter topological_space
example {C : ℝ} (hC0 : 0 < C) : filter.tendsto (λ n : ℕ, C ^ (1 / (n : ℝ))) filter.at_top (𝓝 1) :=
sorry
Yaël Dillies (Apr 08 2022 at 15:13):
Is it not simply 1 / (n : ℝ)
tending to 0
once you've pulled the C ^
out of the tendsto
via continuity?
Jason KY. (Apr 08 2022 at 15:39):
I guess you can prove it with sequential continuity:
example {C : ℝ} (hC0 : 0 < C) :
filter.tendsto (λ n : ℕ, C ^ (1 / (n : ℝ))) filter.at_top (𝓝 1) :=
begin
rw (by rw real.rpow_zero : 𝓝 1 = 𝓝 (C ^ (0 : ℝ))),
exact (continuous_iff_continuous_at.2
(λ x, real.continuous_at_const_rpow hC0.ne.symm)).to_sequentially_continuous _
(tendsto_const_div_at_top_nhds_0_nat 1),
end
María Inés de Frutos Fernández (Apr 08 2022 at 15:41):
I should have asked this in new members; I don't know how to move it there now. I ended up with this proof:
import topology.metric_space.basic
import analysis.special_functions.pow
open_locale filter topological_space
example {C : ℝ} (hC : 0 < C) : filter.tendsto (λ n : ℕ, C ^ (1 / (n : ℝ))) filter.at_top (𝓝 1) :=
begin
apply filter.tendsto.comp _ (tendsto_const_div_at_top_nhds_0_nat 1),
rw ← real.rpow_zero C,
apply continuous_at.tendsto (real.continuous_at_const_rpow (ne_of_gt hC)),
end
Last updated: Dec 20 2023 at 11:08 UTC