Zulip Chat Archive
Stream: Is there code for X?
Topic: Set.diff_subset_diff_inj?
Monica Omar (Aug 14 2025 at 17:28):
do we have something like this:
theorem Set.diff_subset_diff_inj {α : Type*} (s : Set α) {t u : Set α} (h : u ⊆ t) :
s \ u ⊆ t \ u ↔ s ⊆ t := by
Aaron Liu (Aug 14 2025 at 17:31):
import Mathlib
theorem Set.diff_subset_diff_right_iff {α : Type*} (s : Set α) {t u : Set α} (h : u ⊆ t) :
s \ u ⊆ t \ u ↔ s ⊆ t := by
rw [Set.diff_subset_iff, Set.union_diff_cancel h]
Aaron Liu (Aug 14 2025 at 17:32):
This holds more generally in a docs#GeneralizedCoheytingAlgebra
Last updated: Dec 20 2025 at 21:32 UTC