Zulip Chat Archive

Stream: Is there code for X?

Topic: Set.diff_subset_diff_inj?


Monica Omar (Aug 14 2025 at 17:28):

do we have something like this:

theorem Set.diff_subset_diff_inj {α : Type*} (s : Set α) {t u : Set α} (h : u  t) :
    s \ u  t \ u  s  t := by

Aaron Liu (Aug 14 2025 at 17:31):

import Mathlib

theorem Set.diff_subset_diff_right_iff {α : Type*} (s : Set α) {t u : Set α} (h : u  t) :
    s \ u  t \ u  s  t := by
  rw [Set.diff_subset_iff, Set.union_diff_cancel h]

Aaron Liu (Aug 14 2025 at 17:32):

This holds more generally in a docs#GeneralizedCoheytingAlgebra


Last updated: Dec 20 2025 at 21:32 UTC