Zulip Chat Archive
Stream: Is there code for X?
Topic: Sheafification section is amalgamation
Andrew Yang (Jul 12 2022 at 12:59):
Do we know that every section of the sheafification (of a sheaf of types) is the amalgamation of some sections from the original sheaf?
For example
example {C : Type v} [category.{v} C] (J : grothendieck_topology C) {F : Cᵒᵖ ⥤ Type v}
(U : C) (s : (J.sheafify F).obj (op U)) :
∃ (S : sieve U) (H : S ∈ J U) (x : presieve.family_of_elements F S),
(x.comp_presheaf_map $ J.to_sheafify F).is_amalgamation s := sorry
Tagging @Adam Topaz since sheafification is your work.
Adam Topaz (Jul 12 2022 at 13:00):
No we don't have this. Do you have a proof?
Andrew Yang (Jul 12 2022 at 13:03):
I could prove that the subset of sections satisfying the condition (image_sheaf (J.to_sheafify F)
) is a subsheaf of J.sheafify F
, so that there is a map J.sheafify F ⟶ image_sheaf (J.to_sheafify F)
which should show that they are equal.
Adam Topaz (Jul 12 2022 at 13:09):
Where is image_sheaf
?
Andrew Yang (Jul 12 2022 at 13:11):
Sorry about the confusion. I just defined it.
def image_sheaf {C : Type v} [category.{v} C] (J : grothendieck_topology C) {F G : Cᵒᵖ ⥤ Type v}
(f : F ⟶ G) : Cᵒᵖ ⥤ Type v :=
{ obj := λ U, { s : G.obj U // ∃ (S : sieve (unop U)) (H : S ∈ J (unop U))
(x : presieve.family_of_elements F S), (x.comp_presheaf_map f).is_amalgamation s },
map := λ U V i s, ⟨G.map i s, begin
obtain ⟨S, hS, x, hx⟩ := s.prop,
exact ⟨_, J.pullback_stable i.unop hS, x.pullback i.unop,
λ W j hj, (functor_to_types.map_comp_apply G i j.op _).symm.trans (hx _ hj)⟩,
end⟩,
map_id' := λ U, funext $ λ x, subtype.ext (functor_to_types.map_id_apply G ↑x),
map_comp' := λ U V W i j, funext $ λ x, subtype.ext (functor_to_types.map_comp_apply G i j x) }
Andrew Yang (Jul 12 2022 at 13:13):
And there is also
lemma image_sheaf_is_sheaf {C : Type v} [category.{v} C] (J : grothendieck_topology C)
{F G : Cᵒᵖ ⥤ Type v} (f : F ⟶ G) (hG : presieve.is_sheaf J G) :
presieve.is_sheaf J (image_sheaf J f) := sorry
where I have a proof already.
Adam Topaz (Jul 12 2022 at 13:13):
Ah, I see. Anyway that would be a useful lemma to add!
Andrew Yang (Jul 12 2022 at 13:15):
Ok. I'll make it into a PR. Thanks!
Last updated: Dec 20 2023 at 11:08 UTC