Zulip Chat Archive
Stream: Is there code for X?
Topic: Show a tsum is Summable and has a derivative
Mark Andrew Gerads (Feb 06 2025 at 23:01):
import Mathlib
-- (RuesDiff n m) is the mth derivative of (Rues n)
noncomputable
def RuesDiff (n : ℕ+) (m : ℤ) (z : ℂ) : ℂ :=
tsum (λ (k : ℕ) => if ↑↑n ∣ (↑k + m) then z ^ k / k.factorial else 0)
lemma RuesDiffSummable (n : ℕ+) (m : ℤ) (z : ℂ) : Summable (λ (k : ℕ) => if ↑↑n ∣ (↑k + m) then z ^ k / k.factorial else 0) := by
sorry
lemma RuesDiffHasDeriv (n : ℕ+) (m : ℤ) (z : ℂ) : HasDerivAt (RuesDiff n m) (RuesDiff n (m + 1) z) z := by
sorry
I am vaguely aware that I should use code like this:
def RuesDiffSeries (n : ℕ+) (m : ℤ) : FormalMultilinearSeries ℂ ℂ ℂ :=
because I got some help with related Lean 3 code.
Unfortunately, I never fully understood the code, and I have had trouble every time I tried to port it to Lean 4.
It doesn't help that I haven't been able to get the Lean 3 Server working recently, making understanding Lean 3 code more difficult.
Please write simple understandable code, if possible, and thanks to all who help.
Aaron Liu (Feb 06 2025 at 23:26):
I have
lemma RuesDiffSummable (n : ℕ+) (m : ℤ) (z : ℂ) : Summable (λ (k : ℕ) => if ↑↑n ∣ (↑k + m) then z ^ k / k.factorial else 0) := by
apply Summable.of_norm_bounded _ <| Real.summable_pow_div_factorial (norm z)
· intro N
split
· simp
· rw [norm_zero, Complex.norm_eq_abs]
positivity
Mark Andrew Gerads (Feb 08 2025 at 19:04):
I am grateful for the Summable proof.
Someone, please help with the HasDerivAt
proof.
Last updated: May 02 2025 at 03:31 UTC