Zulip Chat Archive
Stream: Is there code for X?
Topic: Span of a finite set over a finite ring
Yaël Dillies (Oct 13 2024 at 12:44):
Do we have that the span of a finite set over finite ring is finite? Alternatively, do we have that a module over a finite ring is finite-dimensional iff it is finite? I couldn't find either direction.
Daniel Weber (Oct 13 2024 at 15:57):
There's docs#FiniteDimensional.finite_of_finite for fields, I can't find it for rings
Yaël Dillies (Oct 13 2024 at 18:41):
Whoops sorry, my code block never sent. Here is my best attempt:
import Mathlib.RingTheory.Finiteness
variable {R M : Type*} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set M}
/-- A finite module is finite-dimensional. -/
-- See note [lower instance priority]
instance (priority := 100) Module.Finite.of_finite [Finite M] : Module.Finite R M := by
sorry
variable [Finite R]
/-- A module over a finite ring has finite dimension iff it is finite. -/
lemma Module.finite_iff_finite : Module.Finite R M ↔ Finite M := by
refine ⟨fun _ ↦ ?_, fun _ ↦ .of_finite⟩
· sorry
lemma Set.Finite.submoduleSpan (hs : s.Finite) : (Submodule.span R s : Set M).Finite := by
lift s to Finset M using hs
rw [Set.Finite, ← Module.finite_iff_finite (R := R)]
dsimp
infer_instance
Yaël Dillies (Oct 13 2024 at 18:41):
Daniel, well spotted. I'll try generalising it
Yaël Dillies (Oct 13 2024 at 19:14):
Ah! docs#Module.Finite.span_of_finite Nevermind
Yaël Dillies (Oct 13 2024 at 19:30):
Last updated: May 02 2025 at 03:31 UTC