Zulip Chat Archive

Stream: Is there code for X?

Topic: Subset relation for Finmap


Ka Wing Li (Jul 21 2025 at 06:30):

Is there any relation like M1M2M_1 \subseteq M_2 for finite map MM?

Kenny Lau (Jul 21 2025 at 06:32):

@Ka Wing Li there are only 117 declarations about Finmap, and i'm afraid none of them is about an ordering - but you can define one easily!

Kenny Lau (Jul 21 2025 at 06:37):

import Mathlib.Data.Finmap

namespace Finmap

variable {α : Type*} {i : α  Type*}

instance : PartialOrder (Finmap i) :=
  PartialOrder.lift entries fun _ _  ext

lemma le_def (x y : Finmap i) : x  y  x.entries  y.entries :=
  Multiset.le_iff_subset x.nodup_entries

end Finmap

Ka Wing Li (Jul 21 2025 at 15:38):

Thanks! I get the idea of how to define relations.


Last updated: Dec 20 2025 at 21:32 UTC