Zulip Chat Archive
Stream: Is there code for X?
Topic: Totally boundedness
Moritz Doll (Mar 18 2022 at 08:56):
I want to show that totally bounded has the following characterization:
import topology.algebra.uniform_group
import topology.uniform_space.cauchy
open_locale topological_space uniformity pointwise
variables {α : Type*}
variables [uniform_space α] [group α] [uniform_group α]
lemma test (A : set α) : totally_bounded A ↔
∀ (U : set α) (hU : U ∈ 𝓝 (1 : α)),
∃ (t : set α), t.finite ∧ A ⊆ ⋃ (y : α) (h : y ∈ t), y • U :=
begin
split; intros h U hU,
{
let m := (λ (x : α × α), x.snd / x.fst),
have hU' : m ⁻¹' U ∈ filter.comap m (𝓝 1) := filter.preimage_mem_comap hU,
rw ←uniformity_eq_comap_nhds_one α at hU',
specialize h (m ⁻¹' U) hU',
rcases h with ⟨s, hs, h⟩,
refine ⟨s, hs, _⟩,
refine h.trans _,
refine set.Union₂_mono _,
intros a ha b hb,
simp only [set.mem_preimage, set.mem_set_of_eq] at hb,
sorry,
},
rw [uniformity_eq_comap_nhds_one α, filter.mem_comap] at hU,
rcases hU with ⟨V, hV, hU⟩,
specialize h V hV,
rcases h with ⟨s, hs, h⟩,
use [s, hs],
refine h.trans _,
refine set.Union₂_mono _,
intros a ha b hb,
refine hU _,
simp only [set.mem_preimage],
sorry,
end
The proof does not quite work (uniformity_eq_comap_nhds_one
has to be replaced with a flipped version). It looks too ugly to be the correct way to do that anyways. Is there a better way to prove this?
Yury G. Kudryashov (Mar 19 2022 at 15:44):
We should add filter.has_basis.totally_bounded_iff
.
Last updated: Dec 20 2023 at 11:08 UTC