Zulip Chat Archive
Stream: Is there code for X?
Topic: Transport Braided Category
Kenny Lau (May 28 2025 at 11:20):
import Mathlib
universe v₁ w₁ v₂ w₂ u₁ u₂
namespace CategoryTheory
namespace BraidedCategory
variable (C : Type u₁) (D : Type u₂) [Category.{v₁} C] [Category.{v₂} D]
[MonoidalCategory C] [BraidedCategory C] (e : C ≌ D)
instance : @BraidedCategory D _ (Monoidal.transport e) :=
letI := Monoidal.transport e
⟨fun X Y ↦ e.functor.mapIso (β_ _ _),
fun X Y Z f ↦ sorry, sorry, sorry, sorry⟩
#check Equivalence.functor
end BraidedCategory
end CategoryTheory
Kenny Lau (May 28 2025 at 11:21):
Do we have code for transporting a braided category (i.e. where the tensor product is commutative up to iso) over an equivalence?
Dagur Asgeirsson (May 28 2025 at 14:44):
Dagur Asgeirsson (May 28 2025 at 14:45):
It's ready for review now
Kenny Lau (May 28 2025 at 15:12):
@Dagur Asgeirsson i would love to review your PR, but I'm not very familiar with category theory; still, i left one comment asking if the things should be computable
Last updated: Dec 20 2025 at 21:32 UTC