Zulip Chat Archive

Stream: Is there code for X?

Topic: Transport Braided Category


Kenny Lau (May 28 2025 at 11:20):

import Mathlib

universe v₁ w₁ v₂ w₂ u₁ u₂

namespace CategoryTheory

namespace BraidedCategory

variable (C : Type u₁) (D : Type u₂) [Category.{v₁} C] [Category.{v₂} D]
  [MonoidalCategory C] [BraidedCategory C] (e : C  D)

instance : @BraidedCategory D _ (Monoidal.transport e) :=
  letI := Monoidal.transport e
  fun X Y  e.functor.mapIso (β_ _ _),
    fun X Y Z f  sorry, sorry, sorry, sorry

#check Equivalence.functor

end BraidedCategory

end CategoryTheory

Kenny Lau (May 28 2025 at 11:21):

Do we have code for transporting a braided category (i.e. where the tensor product is commutative up to iso) over an equivalence?

Dagur Asgeirsson (May 28 2025 at 14:44):

#24490

Dagur Asgeirsson (May 28 2025 at 14:45):

It's ready for review now

Kenny Lau (May 28 2025 at 15:12):

@Dagur Asgeirsson i would love to review your PR, but I'm not very familiar with category theory; still, i left one comment asking if the things should be computable


Last updated: Dec 20 2025 at 21:32 UTC