Zulip Chat Archive

Stream: Is there code for X?

Topic: TwoSidedIdeal.unit_mem_iff


Edison Xie (Aug 31 2025 at 11:26):

We have TwoSidedIdeal.one_mem_iff but do we have these two lemmas? If not should I PR them?

import Mathlib.RingTheory.TwoSidedIdeal.Lattice

lemma TwoSidedIdeal.unit_mem_iff {R : Type*} [Ring R] {I : TwoSidedIdeal R} {x : Rˣ}:
  x.1  I  I =  := fun hx  TwoSidedIdeal.one_mem_iff I|>.1 <| (Units.inv_mul x).symm 
    TwoSidedIdeal.mul_mem_left I _ _ hx, fun h  by simp_all

lemma TwoSidedIdeal.isUnit_mem_iff {R : Type*} [Ring R] {I : TwoSidedIdeal R} {x : R}
    (hx0 : IsUnit x) : x  I  I =  :=
  show hx0.unit.1  I  _ from TwoSidedIdeal.unit_mem_iff

Yaël Dillies (Aug 31 2025 at 11:28):

@loogle IsUnit, TwoSidedIdeal

Yaël Dillies (Aug 31 2025 at 11:28):

says no

Edison Xie (Aug 31 2025 at 11:28):

Yaël Dillies said:

says no

do we want them?

Edison Xie (Aug 31 2025 at 11:28):

I'll make the PR then! :-)


Last updated: Dec 20 2025 at 21:32 UTC