Zulip Chat Archive
Stream: Is there code for X?
Topic: TwoSidedIdeal.unit_mem_iff
Edison Xie (Aug 31 2025 at 11:26):
We have TwoSidedIdeal.one_mem_iff but do we have these two lemmas? If not should I PR them?
import Mathlib.RingTheory.TwoSidedIdeal.Lattice
lemma TwoSidedIdeal.unit_mem_iff {R : Type*} [Ring R] {I : TwoSidedIdeal R} {x : Rˣ}:
x.1 ∈ I ↔ I = ⊤ := ⟨fun hx ↦ TwoSidedIdeal.one_mem_iff I|>.1 <| (Units.inv_mul x).symm ▸
TwoSidedIdeal.mul_mem_left I _ _ hx, fun h ↦ by simp_all⟩
lemma TwoSidedIdeal.isUnit_mem_iff {R : Type*} [Ring R] {I : TwoSidedIdeal R} {x : R}
(hx0 : IsUnit x) : x ∈ I ↔ I = ⊤ :=
show hx0.unit.1 ∈ I ↔ _ from TwoSidedIdeal.unit_mem_iff
Yaël Dillies (Aug 31 2025 at 11:28):
@loogle IsUnit, TwoSidedIdeal
Yaël Dillies (Aug 31 2025 at 11:28):
says no
Edison Xie (Aug 31 2025 at 11:28):
Yaël Dillies said:
says no
do we want them?
Edison Xie (Aug 31 2025 at 11:28):
I'll make the PR then! :-)
Last updated: Dec 20 2025 at 21:32 UTC