Zulip Chat Archive

Stream: Is there code for X?

Topic: add_rpow_le


Johan Commelin (Aug 11 2021 at 05:24):

Do we have this concavity result somewhere?

import analysis.special_functions.pow

noncomputable theory

-- move this
lemma real.add_rpow_le (x y r : )
  (hx : 0  x) (hy : 0  y) (h0r : 0  r) (hr1 : r  1) :
  (x + y)^r  x^r + y^r :=
sorry

Kyle Miller (Aug 11 2021 at 05:31):

@Johan Commelin docs#ennreal.rpow_add_le_add_rpow is close (it requires r to be positive)

Johan Commelin (Aug 11 2021 at 06:26):

Thanks

lemma real.add_rpow_le {x y r : }
  (hx : 0  x) (hy : 0  y) (h0r : 0  r) (hr1 : r  1) :
  (x + y)^r  x^r + y^r :=
begin
  by_cases hr : 0 = r,
  { subst r, simp only [zero_le_one, real.rpow_zero, le_add_iff_nonneg_left], },
  let x' : 0 := x, hx⟩,
  let y' : 0 := y, hy⟩,
  have := ennreal.rpow_add_le_add_rpow x' y' (lt_of_le_of_ne h0r hr) hr1,
  exact_mod_cast this,
end

Last updated: Dec 20 2023 at 11:08 UTC