Zulip Chat Archive
Stream: Is there code for X?
Topic: add_rpow_le
Johan Commelin (Aug 11 2021 at 05:24):
Do we have this concavity result somewhere?
import analysis.special_functions.pow
noncomputable theory
-- move this
lemma real.add_rpow_le (x y r : ℝ)
(hx : 0 ≤ x) (hy : 0 ≤ y) (h0r : 0 ≤ r) (hr1 : r ≤ 1) :
(x + y)^r ≤ x^r + y^r :=
sorry
Kyle Miller (Aug 11 2021 at 05:31):
@Johan Commelin docs#ennreal.rpow_add_le_add_rpow is close (it requires r
to be positive)
Johan Commelin (Aug 11 2021 at 06:26):
Thanks
lemma real.add_rpow_le {x y r : ℝ}
(hx : 0 ≤ x) (hy : 0 ≤ y) (h0r : 0 ≤ r) (hr1 : r ≤ 1) :
(x + y)^r ≤ x^r + y^r :=
begin
by_cases hr : 0 = r,
{ subst r, simp only [zero_le_one, real.rpow_zero, le_add_iff_nonneg_left], },
let x' : ℝ≥0 := ⟨x, hx⟩,
let y' : ℝ≥0 := ⟨y, hy⟩,
have := ennreal.rpow_add_le_add_rpow x' y' (lt_of_le_of_ne h0r hr) hr1,
exact_mod_cast this,
end
Last updated: Dec 20 2023 at 11:08 UTC