Zulip Chat Archive
Stream: Is there code for X?
Topic: analytic continuation?
Alex Kontorovich (Apr 05 2024 at 02:13):
Do we have analytic continuation? Something like:
import Mathlib
theorem AnalyticContinuation {f g : ℂ → ℂ} {s t : Set ℂ} (f_on_s : AnalyticOn ℂ f s)
(g_on_t : AnalyticOn ℂ g t) (f_eq_g_on_cap : Set.EqOn f g (s ∩ t))
(s_open : IsOpen s) (t_open : IsOpen t) (cap_nonempty : Set.Nonempty (s ∩ t)) :
∃! h : ℂ → ℂ, AnalyticOn ℂ h (s ∪ t) ∧ Set.EqOn h f s ∧ Set.EqOn h g t := by
sorry
Alex Kontorovich (Apr 05 2024 at 02:19):
Or even this:
import Mathlib
theorem AnalyticContinuation' {f g : ℂ → ℂ} {s t u : Set ℂ} (f_on_s : AnalyticOn ℂ f s)
(g_on_t : AnalyticOn ℂ g t) (u_sub : u ⊆ s ∩ t) (u_open : IsOpen u)
(u_nonempty : Set.Nonempty u) (f_eq_g_on_u : Set.EqOn f g u) :
Set.EqOn f g (s ∩ t) := by
sorry
Matt Diamond (Apr 05 2024 at 02:25):
this is a completely naive guess, but is docs#AnalyticOn.eqOn_of_preconnected_of_eventuallyEq related at all?
Alex Kontorovich (Apr 05 2024 at 02:45):
I think that should work, thanks!!
Last updated: May 02 2025 at 03:31 UTC