Zulip Chat Archive

Stream: Is there code for X?

Topic: analytic continuation?


Alex Kontorovich (Apr 05 2024 at 02:13):

Do we have analytic continuation? Something like:

import Mathlib

theorem AnalyticContinuation {f g :   } {s t : Set } (f_on_s : AnalyticOn  f s)
    (g_on_t : AnalyticOn  g t) (f_eq_g_on_cap : Set.EqOn f g (s  t))
    (s_open : IsOpen s) (t_open : IsOpen t) (cap_nonempty : Set.Nonempty (s  t)) :
    ∃! h :   , AnalyticOn  h (s  t)  Set.EqOn h f s  Set.EqOn h g t := by
  sorry

Alex Kontorovich (Apr 05 2024 at 02:19):

Or even this:

import Mathlib

theorem AnalyticContinuation' {f g :   } {s t u : Set } (f_on_s : AnalyticOn  f s)
    (g_on_t : AnalyticOn  g t) (u_sub : u  s  t) (u_open : IsOpen u)
    (u_nonempty : Set.Nonempty u) (f_eq_g_on_u : Set.EqOn f g u) :
    Set.EqOn f g (s  t) := by
  sorry

Matt Diamond (Apr 05 2024 at 02:25):

this is a completely naive guess, but is docs#AnalyticOn.eqOn_of_preconnected_of_eventuallyEq related at all?

Alex Kontorovich (Apr 05 2024 at 02:45):

I think that should work, thanks!!


Last updated: May 02 2025 at 03:31 UTC