Zulip Chat Archive
Stream: Is there code for X?
Topic: cases on fin 1
Vasily Ilin (Jun 02 2022 at 03:33):
How do I prove example (i : fin 1) : i = 0 ∨ i = 1
? cases i
does not work.
Vasily Ilin (Jun 02 2022 at 03:35):
I need it for this proof:
import tactic -- imports all the Lean tactics
import linear_algebra.basis
import data.real.basic
import data.complex.basic
import data.complex.module
import data.matrix.notation
open complex
example : linear_independent ℝ ![1+I, 1-I] :=
begin
rw fintype.linear_independent_iff,
intros g h i,
simp [fin.sum_univ_succ, ext_iff] at h,
have h1: g 0 + g 1 + (g 0 + - g 1) = 0+0,
exact congr (congr_arg has_add.add h.left) h.right,
have h2: g 0 + g 1 - (g 0 + - g 1) = 0-0,
exact congr (congr_arg has_sub.sub h.left) h.right,
ring_nf at h1,
ring_nf at h2,
suggest,
-- wanna do cases i
sorry,
end
Kyle Miller (Jun 02 2022 at 03:40):
tactic#fin_cases should work here, as fin_cases i
Heather Macbeth (Jun 02 2022 at 03:43):
By the way, do you know about the linear_combination
tactic? It will give the values of g 0
and g 1
much more easily.
have h1 : g 0 = 0 := by linear_combination (h.1, 1/2) (h.2, 1/2),
Last updated: Dec 20 2023 at 11:08 UTC