Zulip Chat Archive

Stream: Is there code for X?

Topic: cone equiv


Adam Topaz (Aug 03 2021 at 16:15):

I'm sure we have some way of formulating the following, but I can't seem to find it...

import category_theory.limits.cones

open category_theory
open category_theory.limits

universe v
variables {J : Type v} {C : Type*} [category.{v} C] [small_category J] {F G : J  C} (η : F  G)

def foobar : cone F  cone G :=
{ to_fun := λ E, E.X, E.π  η.hom⟩,
  inv_fun := λ E, E.X, E.π  η.inv⟩,
  left_inv := by { rintros X,E⟩, simp },
  right_inv := by { rintros X,E⟩, simp } }

Adam Topaz (Aug 03 2021 at 16:49):

Ah ok, it's docs#category_theory.limits.cones.postcompose_equivalence

Adam Topaz (Aug 03 2021 at 16:52):

What about this?

import category_theory.limits.cones
import category_theory.limits.is_limit

open category_theory
open category_theory.limits

universe v
variables {J : Type v} {C : Type*} [category.{v} C] [small_category J] {F G : J  C} (η : F  G)

def foobar (E : cone F) (hE : is_limit E) : is_limit ((cones.postcompose η.hom).obj E) :=
{ lift := λ S, hE.lift ((cones.postcompose η.inv).obj S),
  fac' := sorry,
  uniq' := sorry }

Adam Topaz (Aug 03 2021 at 16:53):

ping @Bhavik Mehta

Bhavik Mehta (Aug 03 2021 at 17:17):

I'm pretty sure it's in is_limit somewhere, let me find it for you

Bhavik Mehta (Aug 03 2021 at 17:18):

It's the reverse direction of docs#is_limit.postcompose_hom_equiv

Adam Topaz (Aug 03 2021 at 17:28):

Thanks!


Last updated: Dec 20 2023 at 11:08 UTC