Zulip Chat Archive
Stream: Is there code for X?
Topic: cone equiv
Adam Topaz (Aug 03 2021 at 16:15):
I'm sure we have some way of formulating the following, but I can't seem to find it...
import category_theory.limits.cones
open category_theory
open category_theory.limits
universe v
variables {J : Type v} {C : Type*} [category.{v} C] [small_category J] {F G : J ⥤ C} (η : F ≅ G)
def foobar : cone F ≃ cone G :=
{ to_fun := λ E, ⟨E.X, E.π ≫ η.hom⟩,
inv_fun := λ E, ⟨E.X, E.π ≫ η.inv⟩,
left_inv := by { rintros ⟨X,E⟩, simp },
right_inv := by { rintros ⟨X,E⟩, simp } }
Adam Topaz (Aug 03 2021 at 16:49):
Ah ok, it's docs#category_theory.limits.cones.postcompose_equivalence
Adam Topaz (Aug 03 2021 at 16:52):
What about this?
import category_theory.limits.cones
import category_theory.limits.is_limit
open category_theory
open category_theory.limits
universe v
variables {J : Type v} {C : Type*} [category.{v} C] [small_category J] {F G : J ⥤ C} (η : F ≅ G)
def foobar (E : cone F) (hE : is_limit E) : is_limit ((cones.postcompose η.hom).obj E) :=
{ lift := λ S, hE.lift ((cones.postcompose η.inv).obj S),
fac' := sorry,
uniq' := sorry }
Adam Topaz (Aug 03 2021 at 16:53):
ping @Bhavik Mehta
Bhavik Mehta (Aug 03 2021 at 17:17):
I'm pretty sure it's in is_limit somewhere, let me find it for you
Bhavik Mehta (Aug 03 2021 at 17:18):
It's the reverse direction of docs#is_limit.postcompose_hom_equiv
Adam Topaz (Aug 03 2021 at 17:28):
Thanks!
Last updated: Dec 20 2023 at 11:08 UTC