Zulip Chat Archive
Stream: Is there code for X?
Topic: derivative of (f x⁻¹)
Ryan Lahfa (Aug 18 2021 at 11:26):
Do we have quick/direct proofs of:
import analysis.calculus.deriv
lemma deriv.comp_inv {f : ℝ → ℝ} {x: ℝ}
(hx: x ≠ 0) (hdf: differentiable_at ℝ f (1 / x)): deriv (λ (y: ℝ), f y⁻¹) x = - (deriv f (1 / x)) / x^2 :=
begin
simp [← one_div],
rw [deriv.comp _ hdf],
field_simp,
sorry,
-- simp [one_div, differentiable_at_inv hx],
end
I have often difficulties to switch back between inv
, has_div.div 1
and their composed forms , etc.
Anatole Dedecker (Aug 18 2021 at 12:47):
import analysis.calculus.deriv
lemma has_deriv_at.comp_inv {f : ℝ → ℝ} {x f' : ℝ} (hx : x ≠ 0) (hff' : has_deriv_at f f' x⁻¹) :
has_deriv_at (λ y, f (y⁻¹)) (-f' / x^2) x :=
begin
convert hff'.comp x (has_deriv_at_inv $ hx),
ring
end
lemma deriv.comp_inv {f : ℝ → ℝ} {x: ℝ}
(hx: x ≠ 0) (hdf: differentiable_at ℝ f x⁻¹): deriv (λ (y: ℝ), f y⁻¹) x = - (deriv f x⁻¹) / x^2 :=
(hdf.has_deriv_at.comp_inv hx).deriv
Anatole Dedecker (Aug 18 2021 at 12:53):
In my experience it is often easier to use has_deriv_at
and then deduce the deriv
versions because you avoid boring rewriting to get syntactic equality
Ryan Lahfa (Aug 18 2021 at 12:59):
Anatole Dedecker said:
In my experience it is often easier to use
has_deriv_at
and then deduce thederiv
versions because you avoid boring rewriting to get syntactic equality
That's the advice I needed! :)
Last updated: Dec 20 2023 at 11:08 UTC