Zulip Chat Archive

Stream: Is there code for X?

Topic: expand Finset.sum?


Edison Xie (Dec 14 2024 at 07:59):

If I have a sum of finset, for example ∑ x : Fin 3, ![a * a - b * b - c * c + 1, 2 * a * b, 2 * a * c] x • Fin.cons j ![1, ↑i] x, how do I expand it into (a * a - b * b - c * c + 1) • 1 + (2 * a * b) • ↑i + (2 * a * c) • j? The lemma I'm trying to prove is:

lemma expand' (D : Type*) (a b c : ) [DivisionRing D] [Algebra  D] (i j : D):
 x : Fin 3, ![a * a - b * b - c * c + 1, 2 * a * b, 2 * a * c] x  Fin.cons j ![1, i] x =
  (a * a - b * b - c * c + 1)  1 + (2 * a * b)  i + (2 * a * c)  j := sorry

Andrew Yang (Dec 14 2024 at 08:28):

try simp [Fin.sum_univ_three, ← Fin.succ_one_eq_two, -Fin.succ_one_eq_two']

Andrew Yang (Dec 14 2024 at 08:29):

(and you will find that your lemma is wrong)

Edison Xie (Dec 14 2024 at 08:43):

thanks for help the lemma was just made up :joy:


Last updated: May 02 2025 at 03:31 UTC