Zulip Chat Archive
Stream: Is there code for X?
Topic: expand Finset.sum?
Edison Xie (Dec 14 2024 at 07:59):
If I have a sum of finset, for example ∑ x : Fin 3, ![a * a - b * b - c * c + 1, 2 * a * b, 2 * a * c] x • Fin.cons j ![1, ↑i] x
, how do I expand it into (a * a - b * b - c * c + 1) • 1 + (2 * a * b) • ↑i + (2 * a * c) • j
? The lemma I'm trying to prove is:
lemma expand' (D : Type*) (a b c : ℝ) [DivisionRing D] [Algebra ℝ D] (i j : D):
∑ x : Fin 3, ![a * a - b * b - c * c + 1, 2 * a * b, 2 * a * c] x • Fin.cons j ![1, i] x =
(a * a - b * b - c * c + 1) • 1 + (2 * a * b) • i + (2 * a * c) • j := sorry
Andrew Yang (Dec 14 2024 at 08:28):
try simp [Fin.sum_univ_three, ← Fin.succ_one_eq_two, -Fin.succ_one_eq_two']
Andrew Yang (Dec 14 2024 at 08:29):
(and you will find that your lemma is wrong)
Edison Xie (Dec 14 2024 at 08:43):
thanks for help the lemma was just made up :joy:
Last updated: May 02 2025 at 03:31 UTC