Zulip Chat Archive
Stream: Is there code for X?
Topic: integral sum measure
Alex Kontorovich (Feb 12 2022 at 14:03):
Is this true? (There's a version for lintegral
but how to prove this for Bochner?) (Perhaps @Yury G. Kudryashov or @Sebastien Gouezel know immediately?) Came up in discussion with @Heather Macbeth
import measure_theory.integral.bochner
open measure_theory topological_space
variables {α E : Type*} [measurable_space α] [normed_group E] {s t : set α} {μ : measure α} [measurable_space E] [normed_space ℝ E] [borel_space E] [complete_space E] [second_countable_topology E]
theorem integral_sum_measure {ι : Type*} (f : α → E) (μ : ι → measure α) (hf : integrable f (measure.sum μ)) :
∫ (a : α), f a ∂measure.sum μ = ∑' (i : ι), ∫ (a : α), f a ∂μ i :=
begin
refine integrable.induction _ _ _ _ _ hf,
repeat {sorry},
-- FYI This is how `lintegral_sum_measure` is proved:
-- simp only [integral, supr_subtype', simple_func.integral_sum, ennreal.tsum_eq_supr_sum],
-- rw [supr_comm],
-- congr, funext s,
-- induction s using finset.induction_on with i s hi hs, { apply bot_unique, simp },
-- simp only [finset.sum_insert hi, ← hs],
-- refine (ennreal.supr_add_supr _).symm,
-- intros φ ψ,
-- exact ⟨⟨φ ⊔ ψ, λ x, sup_le (φ.2 x) (ψ.2 x)⟩,
-- add_le_add (simple_func.lintegral_mono le_sup_left le_rfl)
-- (finset.sum_le_sum $ λ j hj, simple_func.lintegral_mono le_sup_right le_rfl)⟩
end
Yury G. Kudryashov (Feb 12 2022 at 16:54):
I'll try to prove it.
Yury G. Kudryashov (Feb 12 2022 at 21:26):
I have it (and several supporting lemmas). I'll make a PR later tonight.
Yury G. Kudryashov (Feb 13 2022 at 01:09):
Heather Macbeth (Feb 13 2022 at 01:28):
Thanks, @Yury G. Kudryashov !
Yury G. Kudryashov (Feb 13 2022 at 01:39):
I wonder if there is a version that implies docs#measure_theory.tendsto_set_integral_of_monotone
Last updated: Dec 20 2023 at 11:08 UTC