Zulip Chat Archive
Stream: Is there code for X?
Topic: intervals are infinite
Reid Barton (Aug 06 2020 at 17:43):
Does this already exist?
import data.set.finite
lemma Ioo.infinite {α : Type*} [preorder α] [densely_ordered α] (a b : α) (h : a < b) :
set.infinite (set.Ioo a b) :=
sorry
(edited for truth)
Reid Barton (Aug 06 2020 at 18:04):
I'm pretty sure the answer is no, and I proved it with undue difficulty:
lemma Ioo.infinite [preorder α] [densely_ordered α] {x y : α} (h : x < y) :
infinite (Ioo x y) :=
begin
obtain ⟨c, hc₁, hc₂⟩ := dense h,
intro f,
letI := f.fintype,
have := fintype.well_founded_of_trans_of_irrefl ((<) : Ioo x y → Ioo x y → Prop),
obtain ⟨m, _, hm⟩ := this.has_min univ ⟨⟨c, hc₁, hc₂⟩, trivial⟩,
obtain ⟨z, hz₁, hz₂⟩ := dense m.2.1,
refine hm ⟨z, hz₁, lt_trans hz₂ m.2.2⟩ trivial hz₂
end
Yury G. Kudryashov (Aug 06 2020 at 18:16):
Could you please add type annotations to have and obtain?
Yury G. Kudryashov (Aug 06 2020 at 18:19):
Another similar question: in case of a conditionally compete order the cardinality is at least the cardinality of 2^nat
Reid Barton (Aug 06 2020 at 18:43):
A bold assumption that I can figure out what the types actually are :upside_down:
Reid Barton (Aug 06 2020 at 18:46):
Did you know you can put a _
where I have one on the m
line?
lemma Ioo.infinite [preorder α] [densely_ordered α] {x y : α} (h : x < y) :
infinite (Ioo x y) :=
begin
obtain ⟨c, hc₁, hc₂⟩ : ∃ c : α, x < c ∧ c < y := dense h,
intro f,
letI := f.fintype,
have : well_founded ((<) : Ioo x y → Ioo x y → Prop) :=
fintype.well_founded_of_trans_of_irrefl _,
obtain ⟨m, _, hm⟩ : ∃ (m : Ioo x y) _, ∀ d ∈ univ, ¬ d < m := this.has_min univ ⟨⟨c, hc₁, hc₂⟩, trivial⟩,
obtain ⟨z, hz₁, hz₂⟩ : ∃ (z : α), x < z ∧ z < m := dense m.2.1,
refine hm ⟨z, hz₁, lt_trans hz₂ m.2.2⟩ trivial hz₂
end
Yury G. Kudryashov (Aug 06 2020 at 19:10):
Sorry, I mean docs#conditionally_complete_lattice
Floris van Doorn (Aug 06 2020 at 19:36):
There is src#cardinal.mk_Ioo_real
Floris van Doorn (Aug 06 2020 at 19:37):
Together with src#cardinal.infinite_iff and src#cardinal.cantor you got it.
Reid Barton (Aug 06 2020 at 19:38):
I actually want not just real
though
Floris van Doorn (Aug 06 2020 at 19:38):
Oh edit, nvm: this is for arbitrary dense orders
Floris van Doorn (Aug 06 2020 at 19:39):
Then it doesn't exist AFAIK.
Last updated: Dec 20 2023 at 11:08 UTC