Zulip Chat Archive
Stream: Is there code for X?
Topic: inversion of a group with zero as a monoid_with_zero_hom?
Michael Stoll (Apr 16 2022 at 17:55):
If G
is a comm_group_with_zero
, then group_with_zero.inv : G → G
is a monoid_with_zero_hom
. Is this available in mathlib somewhere?
Michael Stoll (Apr 16 2022 at 18:04):
def inv_as_monoid_with_zero_hom {G : Type*} [comm_group_with_zero G] : G →*₀ G :=
{ to_fun := group_with_zero.inv, map_zero' := inv_zero, map_one' := inv_one,
map_mul' := λ x y, mul_inv₀ }
María Inés de Frutos Fernández (Apr 16 2022 at 18:14):
Could you use docs#inv_monoid_with_zero_hom?
Last updated: Dec 20 2023 at 11:08 UTC