Zulip Chat Archive
Stream: Is there code for X?
Topic: lcm_pos_pos
Xavier Xarles (Apr 25 2022 at 17:00):
Do we have the following?
theorem lcm_pos_pos {m n : ℕ} (hm : 0<m ) (hn : 0<n ) : 0<lcm m n :=
begin
have hmn:=mul_pos hm hn,
rw ←(nat.gcd_mul_lcm m n) at hmn,
have hg: 0≤gcd m n:=dec_trivial,
exact pos_of_mul_pos_left hmn hg,
end
Riccardo Brasca (Apr 25 2022 at 17:02):
We have docs#nat.lcm_ne_zero that is essentially what you want.
Riccardo Brasca (Apr 25 2022 at 17:05):
So
theorem lcm_pos_pos {m n : ℕ} (hm : 0<m ) (hn : 0<n ) : 0 < lcm m n :=
nat.pos_of_ne_zero $ nat.lcm_ne_zero hm.ne' hn.ne'
should work (untested).
Last updated: Dec 20 2023 at 11:08 UTC