Zulip Chat Archive
Stream: Is there code for X?
Topic: le.to_submodule
Nicolò Cavalleri (Dec 28 2022 at 19:24):
I might have forgotten how to search but I cannot find anything like this:
def le.to_submodule {R : Type*} [semiring R] (M : Type*) [add_comm_monoid M] [module R M] {p p' : submodule R M}
(h : p ≤ p') : submodule R p' := (⊤ : submodule R p).map (submodule.of_le h)
Does it already exist?
Adam Topaz (Dec 28 2022 at 19:50):
you can use docs#submodule.comap and docs#submodule.subtype
Adam Topaz (Dec 28 2022 at 19:51):
your h
isn't even needed, and you will end up with the intersection of p
and p'
(as a submodule of p'
)
Last updated: Dec 20 2023 at 11:08 UTC