Zulip Chat Archive
Stream: Is there code for X?
Topic: linear map of subspace ne top
Yury G. Kudryashov (Feb 06 2021 at 01:54):
Do we have ∀ (p : subspace K V) (hp : p ≠ ⊤), ∃ f : V →ₗ[K] K, p ≤ ker f
?
Yury G. Kudryashov (Feb 06 2021 at 01:55):
upd: f ≠ 0
Heather Macbeth (Feb 06 2021 at 02:27):
Can you use docs#exists_extension_of_le_sublinear (which you wrote :wink: )?
Heather Macbeth (Feb 06 2021 at 02:30):
Let v
be a vector not in p
; construct a linear map f : span K (p ∪ v) →ₗ[K] K
which kills p
and sends v
to 1. Use the theorem to extend this to a g : V →ₗ[K] K
with the same properties.
Yury G. Kudryashov (Feb 06 2021 at 02:30):
It's a purely algebraic fact.
Yury G. Kudryashov (Feb 06 2021 at 02:31):
I can prove it. I was not sure that it is not in mathlib
Adam Topaz (Feb 06 2021 at 02:37):
Does mathlib have the fact that a nontrivial vector space has a nontrivial linear map to the field? If so, you can use that and factor through the quotient by p
.
Yury G. Kudryashov (Feb 06 2021 at 02:39):
I'm not sure that we have nontrivial p.quotient <-> p \ne \top
Adam Topaz (Feb 06 2021 at 02:40):
Oh.
Heather Macbeth (Feb 06 2021 at 02:41):
Nor, for that matter, that nontrivial V
implies nontrivial (module.dual K V)
.
Yury G. Kudryashov (Feb 06 2021 at 02:45):
I'll prove it using docs#linear_map.exists_left_inverse_of_injective
Yury G. Kudryashov (Feb 06 2021 at 02:45):
And
/-- Any linear map `f : p →ₗ[K] V'` defined on a subspace `p` can be extended to the whole
space. -/
lemma linear_map.exists_extend {p : submodule K V} (f : p →ₗ[K] V') :
∃ g : V →ₗ[K] V', g.comp p.subtype = f :=
let ⟨g, hg⟩ := p.subtype.exists_left_inverse_of_injective p.ker_subtype in
⟨f.comp g, by rw [linear_map.comp_assoc, hg, f.comp_id]⟩
Last updated: Dec 20 2023 at 11:08 UTC