Zulip Chat Archive
Stream: Is there code for X?
Topic: linear_independent lemmas
Scott Morrison (Jun 08 2021 at 02:34):
I've realised I can work around needing this, so I don't think I'm going to prove this for my current project, but I'm curious if we have something that quickly proves:
import linear_algebra.linear_independent
open_locale classical
variables {ι : Type*} {R M : Type*} [ring R] [add_comm_group M] [module R M] (v : ι → M)
lemma linear_independent.total_ne_total_of_support_sdiff_support (hv : linear_independent R v)
(f g : ι →₀ R) (x ∈ f.support \ g.support) :
finsupp.total ι M R v f ≠ finsupp.total ι M R v g :=
sorry
Scott Morrison (Jun 08 2021 at 02:35):
I guess one just shows x ∈ (f - g).support
, and linearity of finsupp.total
.
Johan Commelin (Jun 08 2021 at 02:35):
finsupp.total
is linear by definition, right?
Scott Morrison (Jun 08 2021 at 02:36):
Yes
Heather Macbeth (Jun 08 2021 at 04:13):
lemma linear_independent.total_ne_total_of_support_sdiff_support (hv : linear_independent R v)
(f g : ι →₀ R) (x ∈ f.support \ g.support) :
finsupp.total ι M R v f ≠ finsupp.total ι M R v g :=
begin
contrapose! H,
simp [hv.total_equiv.injective (subtype.ext H)]
end
Scott Morrison (Jun 08 2021 at 04:53):
kawow! :-)
Johan Commelin (Jun 08 2021 at 05:59):
Quite surprising that the proof doesn't mention x
Last updated: Dec 20 2023 at 11:08 UTC