Zulip Chat Archive

Stream: Is there code for X?

Topic: minimum element exists in any nonempty natural set


Jihoon Hyun (Jul 07 2024 at 15:19):

import Mathlib.Data.Set.Basic

theorem nonempty_nat_set_contains_minimum {s : Set } (hs : s.Nonempty) :
     n  s,  m  s, n  m := by
  by_contra h'
  simp at h'
  rcases hs with n, hn
  induction n using Nat.strongInductionOn with
  | ind m ihm =>
    rcases h' _ hn with ⟨_, h₁, h₂
    exact ihm _ h₂ h₁

Do we have this theorem in mathlib or std/batteries? If not, which file should this theorem be in?

Jihoon Hyun (Jul 07 2024 at 15:22):

Plus, is there a definition for the 'minimum element of set of naturals'? I believe this should be noncomputable, though.

Ruben Van de Velde (Jul 07 2024 at 15:33):

import Mathlib

theorem nonempty_nat_set_contains_minimum {s : Set } (hs : s.Nonempty) :
     n  s,  m  s, n  m :=
  sInf s, Nat.sInf_mem hs, fun m => Nat.sInf_le

Last updated: May 02 2025 at 03:31 UTC